Photonics Research, 2019, 7 (3): 03000318, Published Online: Mar. 7, 2019   

All-angle optical switch based on the zero reflection effect of graphene–dielectric hyperbolic metamaterials Download: 622次

Author Affiliations
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
2 School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China
Copy Citation Text

Wenyao Liang, Zheng Li, Yu Wang, Wuhe Chen, Zhiyuan Li. All-angle optical switch based on the zero reflection effect of graphene–dielectric hyperbolic metamaterials[J]. Photonics Research, 2019, 7(3): 03000318.

References

[1] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 2004, 305: 788-792.

[2] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312: 1780-1782.

[3] Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, N. Liu. Active control of near-field radiative heat transfer between graphene-covered metamaterials. J. Phys. D, 2017, 50: 145101.

[4] D. R. Smith, D. Schurig. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett., 2003, 90: 077405.

[5] Y. Guo, W. Newman, C. L. Cortes, Z. Jacob. Applications of hyperbolic metamaterial substrates. Adv. OptoElectron., 2012, 2012: 452502.

[6] K. V. Sreekanth, A. De Luca, G. Strangi. Negative refraction in graphene-based hyperbolic metamaterials. Appl. Phys. Lett., 2013, 103: 023107.

[7] J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl. Negative refraction in semiconductor metamaterials. Nat. Mater., 2007, 6: 946-950.

[8] C. Argyropoulos, N. M. Estakhri, F. Monticone, A. Alù. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Opt. Express, 2013, 21: 15037-15047.

[9] A. D. Neira, G. A. Wurtz, A. V. Zayats. Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides. Sci. Rep., 2015, 5: 17678.

[10] S. H. Liang, C. H. Jiang, Z. Q. Yang, D. C. Li, W. D. Zhang, T. Mei, D. W. Zhang. Plasmonic slow light waveguide with hyperbolic metamaterials claddings. J. Opt., 2018, 20: 065001.

[11] T. F. Li, V. Nagai, D. H. Gracias, J. B. Khurgin. Limits of imaging with multilayer hyperbolic metamaterials. Opt. Express, 2017, 25: 13588-13601.

[12] D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol., 2014, 9: 48-53.

[13] K. J. Lee, Y. U. Lee, S. J. Kim, P. André. Hyperbolic dispersion dominant regime identified through spontaneous emission variations near metamaterial interfaces. Adv. Mater. Interfaces, 2018, 5: 1701629.

[14] T. A. Morgado, S. I. Maslovski, M. G. Silveirinha. Ultrahigh Casimir interaction torque in nanowire systems. Opt. Express, 2013, 21: 14943-14955.

[15] M. Kim, S. Kim, S. Kim. Optical bistability based on hyperbolic metamaterials. Opt. Express, 2018, 26: 11620-11632.

[16] X. Li, Z. X. Liang, X. H. Liu, X. Y. Jiang, J. Zi. All-angle zero reflection at metamaterial surfaces. Appl. Phys. Lett., 2008, 93: 171111.

[17] W. Li, Z. Liu, X. Zhang, X. Y. Jiang. Switchable hyperbolic metamaterials with magnetic control. Appl. Phys. Lett., 2012, 100: 161108.

[18] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666-669.

[19] G. W. Hanson. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys., 2008, 103: 064302.

[20] A. Vakil, N. Engheta. Transformation optics using graphene. Science, 2011, 332: 1291-1294.

[21] H. Deng, F. Ye, B. A. Malomed, X. Chen, N. C. Panoiu. Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices. Phys. Rev. B, 2015, 91: 201402.

[22] H. Deng, X. Chen, B. A. Malomed, N. C. Panoiu, F. Ye. Tunability and robustness of Dirac points of photonic nanostructures. IEEE J. Sel. Top. Quantum Electron., 2016, 22: 98-106.

[23] Y. C. Chang, C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, T. B. Norris. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun., 2016, 7: 10568.

[24] T. Gric, O. Hess. Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials. Opt. Express, 2017, 25: 11466-11476.

[25] B. Zhu, G. Ren, S. Zheng, Z. Lin, S. Jian. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express, 2013, 21: 17089-17096.

[26] I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar. Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B, 2013, 87: 075416.

[27] H. G. Liu, P. G. Liu, L. A. Bian, C. X. Liu, Q. H. Zhou, Y. W. Chen. Electrically tunable terahertz metamaterials based on graphene stacks array. Superlattices Microstruct., 2017, 112: 470-479.

[28] B. Janaszek, A. Tyszka-Zawadzka, P. Szczepański. Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands. Opt. Express, 2016, 24: 24129-24136.

[29] M. Shoaei, M. K. Moravvej-Farshi, L. Yousefi. Nanostructured graphene-based hyperbolic metamaterial performing as a wide-angle near infrared electro-optical switch. Appl. Opt., 2015, 54: 1206-1211.

[30] M. A. K. Othman, C. Guclu, F. Capolino. Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J. Nanophoton., 2013, 7: 073089.

[31] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon. Topological transitions in metamaterials. Science, 2012, 336: 205-209.

[32] S. Campione, T. S. Luk, S. Liu, M. B. Sinclair. Optical properties of transiently-excited semiconductor hyperbolic metamaterials. Opt. Mater. Express, 2015, 5: 2385-2394.

[33] F. H. Shi, Y. H. Chen, P. Han, P. Tassin. Broadband, spectrally flat, graphene-based terahertz modulators. Small, 2015, 11: 6044-6050.

[34] W. G. Liu, B. Hu, Z. D. Huang, H. Y. Guan, H. T. Li, X. K. Wang, Y. Zhang, H. X. Yin, X. L. Xiong, J. Liu, Y. T. Wang. Graphene-enabled electrically controlled terahertz meta-lens. Photon. Res., 2018, 6: 703-708.

[35] C. Guclu, S. Campione, F. Capolino. Hyperbolic metamaterial as super absorber for scattered fields generated at its surface. Phys. Rev. B, 2012, 86: 205130.

[36] Y. Zhang, Y. Shi, C. H. Liang. Broadband tunable graphene-based metamaterial absorber. Opt. Mater. Express, 2016, 6: 3036-3044.

[37] Y. T. Zhao, B. A. Wu, B. J. Huang, Q. A. Cheng. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. Opt. Express, 2017, 25: 7161-7169.

[38] Y. Shi, Y. Zhang. Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray. IEEE Access, 2018, 6: 5341-5347.

[39] Z. Li, W. Y. Liang, W. H. Chen. Switchable hyperbolic metamaterials based on the graphene-dielectric stacking structure and optical switches design. Europhys. Lett., 2017, 120: 37001.

[40] H. N. S. Krishnamoorthy, B. Gholipour, N. I. Zheludev, C. Soci. A non-volatile chalcogenide switchable hyperbolic metamaterial. Adv. Opt. Mater., 2018, 6: 1800332.

[41] M. Shoaei, M. K. Moravvej-Farshi, L. Yousefi. All-optical switching of nonlinear hyperbolic metamaterials in visible and near-infrared regions. J. Opt. Soc. Am. B, 2015, 32: 2358-2365.

[42] J. Qin, H. M. Dong, K. Han, X. F. Wang. Ultrafast dynamic optical properties of graphene. Acta Phys. Sin., 2015, 64: 237801.

[43] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter, 2007, 19: 026222.

[44] M. A. K. Othman, C. Guclu, F. Capolino. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express, 2013, 21: 7614-7632.

Wenyao Liang, Zheng Li, Yu Wang, Wuhe Chen, Zhiyuan Li. All-angle optical switch based on the zero reflection effect of graphene–dielectric hyperbolic metamaterials[J]. Photonics Research, 2019, 7(3): 03000318.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!