中国激光, 2012, 39 (5): 0503002, 网络出版: 2012-04-13   

飞秒激光烧蚀高定向热解石墨的超快过程研究

Investigation of the Ultrafast Process of Femtosecond Laser Ablation of Highly Oriented Pyrolytic Graphite
作者单位
1 南开大学现代光学研究所 光学信息技术科学教育部重点实验室, 天津 300071
2 中国人民武装警察部队学院基础部, 河北 廊坊 065000
摘要
脉冲激光烧蚀高定向热解石墨(HOPG)是制备富勒烯、碳纳米管等碳纳米材料的重要方法之一。研究和认识飞秒脉冲激光烧蚀高定向热解石墨的超快物理过程,可以为探索飞秒激光烧蚀制备各种碳纳米材料提供重要的实验和理论基础。利用抽运探测技术记录了0.33~20 J/cm2不同激光能流下50 fs激光脉冲烧蚀高定向热解石墨在0~9 ns时间窗口内的超快动态过程,并且比较分析了烧蚀高定向热解石墨和烧蚀铝靶的差别。实验发现,随着入射到高定向热解石墨表面的激光能流从20 J/cm2下降到0.33 J/cm2,光热机制导致的物质去除逐渐减少,光机械机制的应力释放导致的大颗粒物质喷射逐渐成为主要的物质去除过程。分析表明,靶材的吸收系数是导致高定向热解石墨和铝靶烧蚀动态过程不同的主要因素。
Abstract
Pulsed laser ablation of highly oriented pyrolytic graphite (HOPG) is one of the most important methods for fabricating fullerene, carbon nanotube and other carbon nano-materials. Investigation of the ultrafast process of femtosecond laser ablation of HOPG can provide important insights for exploring the method of producing carbon nano-materials with femtosecond laser. Using the pump-probe technique, the ultrafast processes of 50 fs laser ablation of HOPG at different laser fluences from 0.33 J/cm2 to 20 J/cm2 are investigated within the time window of 0~9 ns after the laser pulse strikes the target. The differences between the ablation processes of HOPG and aluminum under the strike of laser pulses with the same parameters are studied. It is found that as the pump laser fluence changes from 20 J/cm2 to 0.33 J/cm2, the HOPG target material removed by the photothermal mechanism gradually decreases; however the ejected material composed of larger particles induced by the photomechanical mechanism gradually increases. It is also found that the absorption coefficient of the ablated target is the main factor that causes the differences between the ablation processes of HOPG and aluminum.
参考文献

[1] 张伟刚, 刘卓琳, 殷丽梅. 飞秒激光刻蚀V型光纤微腔及其干涉谱特性[J]. 光学学报, 2011, 31(7): 0706007

    Zhang Weigang, Liu Zhuolin, Yin Limei. Femtosecond laser micro-machined V-shaped fiber micro-cavity and its interference spectrum characteristics[J]. Acta Optica Sinica, 2011, 31(7): 0706007

[2] 武腾飞, 周常河, 朱林伟. 飞秒激光诱导铬膜产生周期性微结构[J]. 中国激光, 2010, 37(3): 722~725

    Wu Tengfei, Zhou Changhe, Zhu Linwei. Periodic microstructures on chromium film induced by femtosecond laser[J]. Chinese J. Lasers, 2010, 37(3): 722~725

[3] 张镇西, 姚翠萍, 王晶 等. 激光细胞微手术的发展和应用[J]. 光学学报, 2011, 31(9): 0900124

    Zhang Zhenxi, Yao Cuiping, Wang Jing et al.. Development and application of the laser cell microsurgery[J]. Acta Optica Sinica, 2011, 31(9): 0900124

[4] G. Cristoforetti, S. Legnaioli, V. Palleschi et al.. Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration[J]. Spectroc. Acta Part B, 2004, 59(12): 1907~1917

[5] F. Vidal, T. W. Johnston, S. Laville et al.. Critical-point phase separation in laser ablation of conductors[J]. Phys. Rev. Lett., 2001, 86(12): 2573~2576

[6] P. Lorazo, L. J. Lewis, M. Meunier. Short-pulse laser ablation of solids: from phase explosion to fragmentation[J]. Phys. Rev. Lett., 2003, 91(22): 225502

[7] A. Miotello, R. Kelly. Critical assessment of thermal models for laser sputtering at high fluences[J]. Appl. Phys. Lett., 1995, 67(24): 3535~3537

[8] Xuan Liu, Yang Wang. Femtosecond laser ablation of metals: a molecular dynamics simulation study[J]. Chin. Opt. Lett., 2005, 3(1): 57~59

[9] C. Bower, S. Suzuki, K. Tanigaki et al.. Synthesis and structure of pristine and alkali-metal-intercalated single-walled carbon nanotubes[J]. Appl. Phys. A, 1998, 67(1): 47~52

[10] E. Cappelli, S. Orlando, V. Morandi et al.. Nano-graphene growth and texturing by NdYAG pulsed laser ablation of graphite on silicon[J]. J. Phys., 2007, 59(1): 616~624

[11] S. Eliezer, N. Eliaz, E. Grossman et al.. Nanoparticles and nanotubes induced by femtosecond lasers[J]. Laser Part. Beams, 2005, 23(1): 15~19

[12] 雷贻文, 孙景, 杜希文 等. 低功率密度激光合成金刚石的相变机制[J]. 中国激光, 2007, 34(2): 295~299

    Lei Yiwen, Sun Jing, Du Xiwen et al.. Mechanism of phase transformation of diamond synthesized by laser with lower power density[J]. Chinese J. Lasers, 2007, 34(2): 295~299

[13] N. Zhang, X. Zhu, J. Yang et al.. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum[J]. Phys. Rev. Lett., 2007, 99(16): 167602

[14] Z. Wu, X. Zhu, N. Zhang. Time-resolved shadow graphic study of femtosecond laser ablation of aluminum under different ambient air pressures[J]. J. Appl. Phys., 2011, 109(5): 053113~053120

[15] G. Paltauf, P. E. Dyer. Photomechanical processes and effects in ablation[J]. Chem. Rev., 2003, 103(2): 487~518

[16] N. Zhang, W. Wang, X. Zhu et al.. Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum[J]. Opt. Express, 2011, 19(9): 8870~8878

[17] Zehua Wu, Nan Zhang, Mingwei Wang et al.. Femtosecond laser ablation of silicon in air and vacuum[J]. Chin. Opt. Lett., 2011, 9(9): 093201

[18] E. D. Palik. Handbook of Optical Constants of Solids II[M]. San Diego: Academic Press, 1991. 458

张楠, 杨景辉, 朱晓农. 飞秒激光烧蚀高定向热解石墨的超快过程研究[J]. 中国激光, 2012, 39(5): 0503002. Zhang Nan, Yang Jinghui, Zhu Xiaonong. Investigation of the Ultrafast Process of Femtosecond Laser Ablation of Highly Oriented Pyrolytic Graphite[J]. Chinese Journal of Lasers, 2012, 39(5): 0503002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!