红外与激光工程, 2016, 45 (11): 1106009, 网络出版: 2017-01-20   

金属零件自动超轻结构化设计及激光增材制造

Automatic design and laser additive manufacturing of super-light structure of metal part
作者单位
1 韶关学院 物理与机电工程学院, 广东 韶关 512005
2 湖南科技大学 先进矿山装备教育部工程研究中心, 湖南 湘潭 411201
摘要
为解决金属超轻结构零件设计技术复杂、设计周期长、难添加蒙皮进行增材制造等难题, 提出一种基于激光选区熔化增材制造工艺的金属零件自动超轻结构化设计方法: 根据激光选区熔化工艺特点, 编制程序将原始零件CAD模型自动转化为设定孔隙率的带蒙皮类蜂窝状超轻结构零件模型, 且其数据可直接驱动设备实现零件增材制造。研究了带蒙皮超轻结构的构造形式及设计方法; 探讨了合适的成型棱长及合理蒙皮结构形式; 成功实现复杂零件自动带蒙皮超轻结构化设计及增材制造, 所得零件孔隙率误差2.79%,表明能较准确按预期减重。该方法能根据原始零件CAD模型自动、快速地构建带蒙皮金属超轻结构零件模型, 大大减轻该类零件设计负担及提高其实用性。
Abstract
In order to solve the problems when designing super-light structure part such as needing complex design techniques, long design cycle, difficult to add skin if making it by additive manufacturing technology, based on selective laser melting technology, a method which can automatically add skinned super-light structure to traditional metal part CAD model was put forward in this paper. Considering the selective laser melting process characteristics, through an algorithm, a skinned super-light quasi-honeycomb structure part model with a preset porosity can be automatically designed by transforming an original CAD model. And the new part model data format can direct drive a selective laser melting machine for additive manufacturing without any data format transformation. The construction and design method of the skinned super-light structure of metal part were studied. Through process analysis, appropriate processing unit length and reasonable skin tissue of super-light structure metal part were gotten. The above method was tested successfully on a part model with complex shape in a selective laser melting experiment. The error of porosity is 2.79%, which means that this method can accurately reduce part mass according to preset porosity value. Therefore, in this way, skinned super-light structure part can be design automatically and quickly based on an original CAD model without super-light structure, the burden to design this kind of parts will be greatly reduced, and the practicability of the parts made through this method will be improved greatly.
参考文献

[1] 阎军.超轻金属结构与材料性能多尺度分析与协同优化设计[D]. 大连: 大连理工大学, 2007: 1-5.

    Yan Jun. Multiscale analysis and concurrent optimization for ultra-light metal structures and materials[D]. Dalian: Dalian University of Technology, 2007: 1-5. (in Chinese)

[2] 杨永强, 吴伟辉. 制造改变设计-3D打印直接制造技术[M]. 北京: 中国科学技术出版社, 2014: 20-108.

    Yang Yongqiang, Wu Weihui. Manufacturing changes design-3D printing direct manufacturing technology[M]. Beijing: China Science and Technology Press, 2014: 20-21. (in Chinese)

[3] Wehmoller M, Warnke T P H. Implant design and production a new approach by selective laser melting[J]. International Congress Series, 2005, 12(81): 690-695.

[4] Rehme O, Emmelmann C. Rapid manufacturing of lattice structures with selective laser melting[C]//Proceedings of SPIE, Laser-based Micropackaging, 2006: 1-12.

[5] Yadroitsev I, Shishkovsky I, Bertrand P, et al. Manufacturing of fine-structured 3D porous filter elements by selective laser melting[J]. Applied Surface Science, 2009, 255(10): 5523-5527.

[6] Van Bael S, Kerckhofs G, Moesen M, et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6A14V porous structures[J]. Materials Science and Engineering A, 2011, 528(24): 7423-7431.

[7] 孙健峰.激光选区熔化Ti6Al4V可控多孔结构制备及机理研究[D]. 广州: 华南理工大学, 2013: 70-78.

    Sun Jianfeng. Research on fabrication and forming mechanism of controllable porous structure of ti6a14v based on selective laser melting[D]. Guangzhou: South China University of Technology, 2013: 70-78. (in Chinese)

[8] Smith M, Guan Z, Cantwell W J. Finite element modeling of the compressive response of lattice structures manufactured using the selective laser melting technique[J]. International Journal of Mechanical Sciences, 2013, 67(10): 28-41.

[9] 肖冬明. 面向植入体的多孔结构建模及激光选区熔化直接制造研究[D]. 广州: 华南理工大学, 2013: 30-45.

    Xiao Dongming. Modeling of porous structure of implants and direct manufacturing by selective laser melting[D]. Guangzhou: South China University of Technology, 2013: 30-45. (in Chinese)

[10] Lorna J. Gibson, Michael F. Ashby. Cellular solids: structure and properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1999: 20-47.

[11] 张升. 医用合金粉末激光选区熔化成形工艺与性能研究[D]. 武汉: 华中科技大学, 2014: 90-100.

    Zhang Sheng. Research on the forming processes and properties in selective laser melting of medical alloy powders[D]. Wuhan: Huazhong University of Science and Technology: 90-100. (in Chinese)

[12] 吴伟辉, 杨永强, 何兴容, 等.金属质个性化手术模板的全数字化快速设计及制造[J]. 光学 精密工程, 2010, 18(5): 1135-1143.

    Wu Weihui, Yang Yongqiang, He Xingrong, et al. All--digital rapid design and manufacture of metal customized surgical guide plate[J]. Opt Precision Eng, 2010, 18(5): 1135-1143. (in Chinese)

[13] 王迪, 刘睿诚, 杨永强. 激光选区熔化成型免组装机构间隙设计及工艺优化[J]. 中国激光, 2014, 41(2): 0203004.

    Wang Di, Liu Ruicheng, Yang Yongqiang. Clearance design and process optimization of non-assembly mechanisms fabricated by selective laser melting[J]. Chinese J Lasers, 2014, 41(2): 0203004. (in Chinese)

[14] Kruth J P, Deckers J, Yasa E. Experimental investigation of laser surface remelting for the improvement of selective laser melting process[C]//14th European Forum on Rapid Prototyping, 2009: 321-332.

[15] Yasa E, Kruth J P. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 2011, 19(11): 389-395.

吴伟辉, 肖冬明, 毛星. 金属零件自动超轻结构化设计及激光增材制造[J]. 红外与激光工程, 2016, 45(11): 1106009. Wu Weihui, Xiao Dongming, Mao Xing. Automatic design and laser additive manufacturing of super-light structure of metal part[J]. Infrared and Laser Engineering, 2016, 45(11): 1106009.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!