光学学报, 2021, 41 (1): 0124001, 网络出版: 2021-02-23   

人工表面等离激元超材料 下载: 3342次特邀综述

Spoof Plasmonic Metamaterials
作者单位
1 东南大学电磁空间科学与技术研究院, 江苏 南京 210096
2 东南大学毫米波国家重点实验室, 江苏 南京 210096
引用该论文

张浩驰, 何沛航, 牛凌云, 张乐鹏, 崔铁军. 人工表面等离激元超材料[J]. 光学学报, 2021, 41(1): 0124001.

Haochi Zhang, Peihang He, Lingyun Niu, Lepeng Zhang, Tiejun Cui. Spoof Plasmonic Metamaterials[J]. Acta Optica Sinica, 2021, 41(1): 0124001.

参考文献

[1] Paul CR. Introduction to electromagnetic compatibility[M]. New York: Wiley, 2007.

[2] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[3] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 2008, 7(6): 442-453.

[4] Jones A C, Olmon R L, Skrabalak S E, et al. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires[J]. Nano Letters, 2009, 9(7): 2553-2558.

[5] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics[J]. Nature Materials, 2012, 11(3): 174-177.

[6] Hibbins A P, Hendry E, Lockyear M J, et al. Prism coupling to ‘designer’ surface plasmons[J]. Optics Express, 2008, 16(25): 20441-20447.

[7] Maier SA. Plasmonics: fundamentals and applications[M]. New York: Springer, 2007.

[8] Pendry J B. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847-848.

[9] Garcia-Vidal F J, Martín-Moreno L, Pendry J B. Surfaces with holes in them: new plasmonic metamaterials[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(2): S97-S101.

[10] Shen X, Cui T J, Martin-Cano D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. PNAS, 2013, 110(1): 40-45.

[11] Zhou Y J, Jiang Q, Cui T J. Bidirectional bending splitter of designer surface plasmons[J]. Applied Physics Letters, 2011, 99(11): 111904.

[12] Zhang H C, He P H, Liu Z X, et al. Dispersion analysis of deep-subwavelength-decorated metallic surface using field-network joint solution[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 2923-2933.

[13] Zhang H C, He P H, Gao X X, et al. Loss analysis of plasmonic metasurfaces using field-network-joint method[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3521-3526.

[14] Hibbins A P. Experimental verification of designer surface plasmons[J]. Science, 2005, 308(5722): 670-672.

[15] Juluri B K. Lin S C S, Walker T R, et al. Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index[J]. Optics Express, 2009, 17(4): 2997-3006.

[16] Zhang H C, Cui T J, Zhang Q, et al. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons[J]. ACS Photonics, 2015, 2(9): 1333-1340.

[17] Zhang H C, Zhang Q, Liu J F, et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies[J]. Scientific Reports, 2016, 6(1): 23396.

[18] Tang W X, Zhang H C, Liu J F, et al. Reduction of radiation loss at small-radius bend using spoof surface plasmon polariton transmission line[J]. Scientific Reports, 2017, 7(1): 41077.

[19] Zhang H C, Tang W X, Xu J, et al. Reduction of shielding-box volume using SPP-like transmission lines[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(9): 1486-1492.

[20] Gao X X, Zhang H C, He P H, et al. Crosstalk suppression based on mode mismatch between spoof SPP transmission line and microstrip[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(11): 2267-2275.

[21] He P H, Zhang H C, Tang W X, et al. Shielding spoof surface plasmon polariton transmission lines using dielectric box[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(12): 1077-1079.

[22] Tang X L, Zhang Q F, Hu S M, et al. Capacitor-loaded spoof surface plasmon for flexible dispersion control and high-selectivity filtering[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(9): 806-808.

[23] Chen C C. A new kind of spoof surface plasmon polaritons structure with periodic loading of T-shape grooves[J]. AIP Advances, 2016, 6(10): 105003.

[24] Liu X Y, Zhu L, Wu Q S, et al. Highly-confined and low-loss spoof surface plasmon polaritons structure with periodic loading of trapezoidal grooves[J]. AIP Advances, 2015, 5(7): 077123.

[25] He P H, Zhang H C, Gao X X, et al. A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements[J]. Opto-Electronic Advances, 2019, 2(6): 190001.

[26] Wan X, Cui T J. Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip[J]. AIP Advances, 2014, 4(4): 047137.

[27] Kianinejad A, Chen Z N, Qiu C W. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(6): 1817-1825.

[28] Zhang H C, Cui T J, Xu J, et al. Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial[J]. Advanced Materials and Technologies, 2017, 2(1): 1600202.

[29] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 2004, 432(7015): 376-379.

[30] Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431.

[31] Wu C J, Cheng Y Z, Wang W Y, et al. Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling[J]. Applied Physics Express, 2015, 8(12): 122001.

[32] Sun W J, He Q, Sun S L, et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light: Science & Applications, 2016, 5(1): e16003.

[33] Ma H F, Shen X P, Cheng Q, et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons[J]. Laser & Photonics Reviews, 2014, 8(1): 146-151.

[34] Liao Z, Zhao J, Pan B C, et al. Broadband transition between microstrip line and conformal surface plasmon waveguide[J]. Journal of Physics D, 2014, 47(31): 315103.

[35] Kianinejad A, Chen Z N, Qiu C W. Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(10): 3078-3086.

[36] Zhang W J, Zhu G Q, Sun L G, et al. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation[J]. Applied Physics Letters, 2015, 106(2): 021104.

[37] Zhang H C, Liu S, Shen X P, et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies[J]. Laser & Photonics Reviews, 2015, 9(1): 83-90.

[38] He P H, Zhang H C, Tang W X, et al. A multi-layer spoof surface plasmon polariton waveguide with corrugated ground[J]. IEEE Access, 2017, 5: 25306-25311.

[39] Yan R T, Zhang H C, He P H, et al. A broadband and high-efficiency compact transition from microstrip line to spoof surface plasmon polaritons[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(1): 23-26.

[40] Gao X, Zhou L, Yu X Y, et al. Ultra-wideband surface plasmonic Y-splitter[J]. Optics Express, 2015, 23(18): 23270-23277.

[41] Wu Y L, Li M X, Yan G Y, et al. Single-conductor co-planar quasi-symmetry unequal power divider based on spoof surface plasmon polaritons of bow-tie cells[J]. AIP Advances, 2016, 6(10): 105110.

[42] Liu X Y, Feng Y J, Chen K, et al. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures[J]. Optics Express, 2014, 22(17): 20107-20116.

[43] Gao X, Shi J H, Shen X P, et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies[J]. Applied Physics Letters, 2013, 102(15): 151912.

[44] Shen X P, Cui T J. Planar plasmonic metamaterial on a thin film with nearly zero thickness[J]. Applied Physics Letters, 2013, 102(21): 211909.

[45] Yin J Y, Ren J, Zhang H C, et al. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure[J]. Scientific Reports, 2015, 5(1): 8165.

[46] Zhang Q, Zhang H C, Wu H, et al. A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters[J]. Scientific Reports, 2015, 5(1): 16531.

[47] Guan D F, You P, Zhang Q F, et al. Hybrid spoof surface plasmon polariton and substrate integrated waveguide transmission line and its application in filter[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 4925-4932.

[48] Xu B Z, Li Z, Liu L L, et al. Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons[J]. Journal of the Optical Society of America B, 2016, 33(7): 1388-1391.

[49] Liu X Y, Zhu L, Feng Y J. Spoof surface plasmon-based bandpass filter with extremely wide upper stopband[J]. Chinese Physics B, 2016, 25(3): 034101.

[50] Zhao L, Zhang X, Wang J, et al. A novel broadband band-pass filter based on spoof surface plasmon polaritons[J]. Scientific Reports, 2016, 6(1): 36069.

[51] Xu J J, Zhang H C, Zhang Q, et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes[J]. Applied Physics Letters, 2015, 106(2): 021102.

[52] Xu J J, Yin J Y, Zhang H C, et al. Compact feeding network for array radiations of spoof surface plasmon polaritons[J]. Scientific Reports, 2016, 6(1): 22692.

[53] Zhang H C, Liu L, He P H, et al. A wide-angle broadband converter: from odd-mode spoof surface plasmon polaritons to spatial waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7425-7432.

[54] Lu J Y, Zhang H C, He P H, et al. Design of miniaturized antenna using corrugated microstrip[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1918-1924.

[55] Pors A, Moreno E, Martin-Moreno L, et al. Localized spoof plasmons arise while texturing closed surfaces[J]. Physical Review Letters, 2012, 108(22): 223905.

[56] Shen X P, Cui T J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons[J]. Laser & Photonics Reviews, 2014, 8(1): 137-145.

[57] Liao Z, Luo Y. Fernández-Domínguez A I, et al. High-order localized spoof surface plasmon resonances and experimental verifications[J]. Scientific Reports, 2015, 5: 9590.

[58] McFarland A D, van Duyne R P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity[J]. Nano Letters, 2003, 3(8): 1057-1062.

[59] Huidobro P A, Shen X P, Cuerda J, et al. Magnetic localized surface plasmons[J]. Physical Review X, 2014, 4(2): 021003.

[60] Liao Z, Shen X P, Pan B C, et al. Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions[J]. ACS Photonics, 2015, 2(6): 738-743.

[61] Liao Z. Fernández-Domínguez A I, Zhang J J, et al. Homogenous metamaterial description of localized spoof plasmons in spiral geometries[J]. ACS Photonics, 2016, 3(10): 1768-1775.

[62] Zhang J J, Liao Z, Luo Y, et al. Spoof plasmon hybridization[J]. Laser & Photonics Reviews, 2017, 11(1): 1600191.

[63] Zhang H C, Fan Y F, Guo J, et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 2016, 3(1): 139-146.

[64] Gao X X, Zhang J J, Zhang H C, et al. Dynamic controls of second-harmonic generations in both forward and backward modes using reconfigurable plasmonic metawaveguide[J]. Advanced Optical Materials, 2020, 8(8): 1902058.

[65] Zhang H C, He P H, Gao X X, et al. Pass-band reconfigurable spoof surface plasmon polaritons[J]. Journal of Physics: Condensed Matter, 2018, 30(13): 134004.

[66] Gao X X, Zhang H C, Wu L W, et al. Programmable multifunctional device based on spoof surface plasmon polaritons[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(5): 3770-3779.

[67] Zhou Y J, Zhang C, Yang L, et al. Electronically switchable and tunable bandpass filters based on spoof localized surface plasmons[J]. Journal of the Optical Society of America B, 2017, 34(7): D9.

[68] Zhang H C, Zhang L P, He P H, et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals[J]. Light: Science & Applications, 2020, 9: 113.

[69] Zhang H C, Cui T J, Luo Y, et al. Active digital spoof plasmonics[J]. National Science Review, 2020, 7(2): 261-269.

张浩驰, 何沛航, 牛凌云, 张乐鹏, 崔铁军. 人工表面等离激元超材料[J]. 光学学报, 2021, 41(1): 0124001. Haochi Zhang, Peihang He, Lingyun Niu, Lepeng Zhang, Tiejun Cui. Spoof Plasmonic Metamaterials[J]. Acta Optica Sinica, 2021, 41(1): 0124001.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!