激光与光电子学进展, 2015, 52 (11): 112702, 网络出版: 2015-11-09  

基于布居数探测的准Λ型四能级原子高精度局域化研究

Study on High-Precision Atom Localization via Population in Quasi-Λ-Type Four-Level Atomic System
作者单位
江南大学理学院, 江苏 无锡 214122
摘要
提出了基于探测高能级上原子布居数实现近简并准Λ型四能级原子系统局域化的方案。利用微扰理论求解薛定谔方程得到了基于上能级原子布居的原子位置的条件几率分布表达式。理论分析了原子局域峰的位置及宽度,得到了它们的解析表达式,给出了原子局域峰分裂的条件。研究表明,当系统中的耦合场和探测场满足电磁诱导透明配置条件或高能级向近简并的两个低能态跃迁的几率幅相干相消时,不能实现原子局域化。在电磁诱导透明窗附近,可以实现高精度原子局域化。原子局域峰的宽度取决于耦合场强度和近简并能级之间的间隔。
Abstract
A scheme for atom localization via measuring population of the upper level in a quasi-Λ-type four-level atomic system is proposed. The function of conditional position probability distribution based on population of the upper level is obtained by solving the Schr?dinger equation using the perturbation theory. The position and width of the atomic location peak are analyzed theoretically and their equations are obtained. It is found that when the coupling field and probing field are in accord with the configuration of electromagnetically induced transparency (EIT) or when the probability amplitudes of the atom transitions from the upper level to the near-degenerate lower levels are destructive interference, atomic location cannot be obtained. But near the EIT window, the atom can be localized precisely. The peak position and its width of atom location are determined by the coupling field intensity and the space between the near-degenerate lower levels.
参考文献

[1] M W Zwierlein, J R Abo-Shaeer, A Schirotzek, et al.. Vortices and super fluidity in a strongly interacting Fermi gas[J]. Nature, 2005, 435(7045): 1047-1051.

[2] W D Phillips. Laser cooling and trapping of neutral atoms[J]. Reviews of Modern Physics, 1998, 70(3): 721-741.

[3] K S Johnson, J H Thywissen, N H Dekker, et al.. Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit[J]. Science, 1998, 280(5369): 1583-1586.

[4] G P Collins. Quantitative BEC results reported at DAMOP meeting[J]. Physics Today, 1996, 49(8): 18-20.

[5] K T Kapale, S Qamar, M S Zubairy. Spectroscopic measurement of an atomic wave function[J]. Physical Review A, 2003, 67(2): 023805.

[6] F Le Kien, G Rempe, W P Schleich, et al.. Atom localization via Ramsey interferometry: a coherent cavity field provides a better resolution[J]. Physical Review A, 1997, 56(4): 2972-2977.

[7] S Kunze, K Dieckmann, G Rempe. Diffraction of atoms from a measurement induced grating[J]. Physical Review Letters, 1997, 78(11): 2038-2041.

[8] J E Thomas, L J Wang. Precision position measurement of moving atoms[J]. Physics Reports, 1995, 262(6): 311-366.

[9] 杜英杰, 杨战营, 白晋涛. 电磁感应透明介质的高阶非线性特性[J]. 光学学报, 2014, 34(6): 0627001.

    Du Yingjie, Yang Zhanying, Bai Jintao. High order nonlinear characteristics for electromagnetically induced transparency media[J]. Acta Optica Sinica, 2014, 34(6): 0627001.

[10] 李芳, 周瑶瑶, 贾晓军. 相干反馈控制实现两组份纠缠态光场纠缠增强[J]. 光学学报, 2014, 34(10): 1027001.

    Li Fang, Zhou Yaoyao, Jia Xiaojun. Entanglement enhancement of bipartite entangled states through coherent feedback control[J]. Acta Optica Sinica, 2014, 34(10): 1027001.

[11] Zhengyang Bai, Chao Hang, Guoxiang Huang. Storage and retrieval of ultraslow optical solitons in coherent atomic system[J]. Chin Opt Lett, 2013, 11(1): 012701.

[12] 孟艳玲, 高源慈, 郑本昌, 等. 积分球与微波腔一体化装置的研制[J]. 中国激光, 2014, 41(9): 0918001.

    Meng Yanling, Gao Yuanci, Zheng Benchang, et al.. Design for the integration of integrating sphere and microwave cavity[J]. Chinese J Lasers, 2014, 41(9): 0918001.

[13] 赵顾颢, 赵尚弘, 幺周石, 等. 基于双光纤布拉格光栅滤波的量子密钥分发误码率分析[J]. 中国激光, 2013, 40(9): 0918001.

    Zhao Guhao, Zhao Shanghong, Yao Zhoushi, et al.. Quantum key distribution analysis for filtering scheme based on double fiber Bragg grating[J]. Chinese J Lasers, 2013, 40(9): 0918001.

[14] 赵顾颢, 赵尚弘, 幺周石, 等. 旋光双反射结构的光子偏振态误差分析[J]. 中国激光, 2013, 40(2): 0218001.

    Zhao Guhao, Zhao Shanghong, Yao Zhoushi, et al.. Polarization error analysis of rotatory double reflection structure [J]. Chinese J Lasers, 2013, 40(2): 0218001.

[15] M Sahrai, H Tajalli, K T Kapale, et al.. Subwavelength atom localization via amplitude and phase control of the absorption spectrum[J]. Physical Review A, 2005, 72(1): 013820.

[16] K T Kapale, M S Zubairy. Subwavelength atom localization via amplitude and phase control of the absorption spectrum. II[J]. Physical Review A, 2006, 73(2): 023813.

[17] S Qamar. Precision in single atom localization via Raman-driven coherence: role of detuning and phase shift[J]. Physics Letters A, 2013, 377(25): 1587-1592.

[18] F Ghafoor. Subwavelength atom localization via quantum coherence in a three-level atomic system[J]. Physical Review A, 2011, 84(6): 063849.

[19] E Paspalakis, P L Knight. Localizing an atom via quantum interference[J]. Physical Review A, 2001, 63(6): 065802.

张蕾, 张向阳. 基于布居数探测的准Λ型四能级原子高精度局域化研究[J]. 激光与光电子学进展, 2015, 52(11): 112702. Zhang Lei, Zhang Xiangyang. Study on High-Precision Atom Localization via Population in Quasi-Λ-Type Four-Level Atomic System[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112702.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!