激光与光电子学进展, 2018, 55 (9): 090004, 网络出版: 2018-09-08   

沙氏大气激光雷达技术及其研究进展 下载: 1411次

Atmospheric Scheimpflug Lidar Technique and Its Progress
梅亮 *
作者单位
大连理工大学光电工程与仪器科学学院, 辽宁 大连 116024
引用该论文

梅亮. 沙氏大气激光雷达技术及其研究进展[J]. 激光与光电子学进展, 2018, 55(9): 090004.

Mei Liang. Atmospheric Scheimpflug Lidar Technique and Its Progress[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090004.

参考文献

[1] Lenoble J, Remer L, Tanre D. Aerosol remote sensing[M]. Verlag Berlin Heidelberg: Springer, 2013.

[2] Fujii T, Fukuchi T. Laser remote sensing[M]. Boca Raton: Taylor & Francis, 2005.

[3] Liu D, Wang Y J, Wang Z Z, et al. Development of multi-wavelength Raman lidar and its application on aerosol and cloud research[J]. EPJ Web of Conferences, 2016, 119: 25011.

[4] 吕立慧, 刘文清, 张天舒, 等. 基于激光雷达的京津冀地区大气边界层高度特征研究[J]. 激光与光电子学进展, 2017, 54(1): 010101.

    Lü L H, Liu W Q, Zhang T S, et al. Characteristics of boundary layer height in Jing-Jin-Ji area based on lidar[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010101.

[5] 陈莎莎, 徐青山, 徐赤东, 等. 基于微脉冲激光雷达计算整层大气气溶胶光学厚度[J], 光学学报, 2017, 37(7): 0701002.

    Chen S S, Xu Q S, Xu C D, et al. Calculation of whole atmospheric aerosol optical depth based on micro-pulse lidar[J]. Acta Optica Sinica, 2017, 37(7): 0701002.

[6] Wu S H, Song X Q, Liu B Y, et al. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement[J]. Optics Express, 2015, 23(26): 33870-33892.

[7] 狄慧鸽, 侯晓龙, 赵虎, 等. 多波长激光雷达探测多种天气气溶胶光学特性与分析[J]. 物理学报, 2014, 63(24): 244206.

    Di H G, Hou X L, Zhao H, et al. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar[J]. Acta Physica Sinica, 2014, 63(24): 244206.

[8] 邵江锋, 华灯鑫, 汪丽, 等. 全天时紫外高光谱瑞利测温激光雷达系统[J]. 光学学报, 2017, 37(6):0601003.

    Shao J F, Hua D X, Wang L, et al. Full-time lidar system for ultraviolet high spectral Rayleigh temperature measurement[J]. Acta Optica Sinica, 2017, 37(6): 0601003.

[9] Mamouri R E, Papayannis A, Amiridis V, et al. Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece[J]. Atmospheric Measurement Techniques, 2012, 5(7): 1793-1808.

[10] Rogers R R, Hair J W, Hostetler C A, et al. NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation[J]. Atmospheric Chemistry and Physics, 2009, 9(14): 4811-4826.

[11] Engelmann R, Kanitz T, Baars H, et al. EARLINET Raman lidar PollyXT: the neXT generation[J]. Atmospheric Measurement Techniques Discussions, 2015, 8(7): 7737-7780.

[12] Meki K, Yamaguchi K, Li X, et al. Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere[J]. Optics Letters, 1996, 21(17): 1318-1320. DOI: 10. 1364/ol. 21. 001318. [LinkOut]

[13] Barnes J E, Sharma N C P, Kaplan T B. Atmospheric aerosol profiling with a bistatic imaging lidar system[J]. Applied Optics, 2007, 46(15): 2922-2929.

[14] Tao Z M, Liu D, Wang Z Z, et al. Measurements of aerosol phase function and vertical backscattering coefficient using a charge-coupled device side-scatter lidar[J]. Optics Express, 2014, 22(1): 1127-1134.

[15] Rocadenbosch F. Lidar-aerosol sensing[M]∥Encyclopedia of optical engineering. New York: Marcel Dekker, Inc., 2013.

[16] Sullivan J T, McGee T J, Sumnicht G K, et al. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, D. C. region[J]. Atmospheric Measurement Techniques, 2014, 7(10): 3529-3548.

[17] Beniston M, Wolf J P, Benistonrebetez M, et al. Use of lidar measurements and numerical-models in air-pollution research[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D7): 9879-9894.

[18] Fukuchi T, Nayuki T, Cao N W, et al. Differential absorption lidar system for simultaneous measurement of O3 and NO2: system development and measurement error estimation[J]. Optical Engineering, 2003, 42(1): 98-104.

[19] Guan Z G, Lundin P, Mei L, et al. Vertical lidar sounding of atomic mercury and nitric oxide in a major Chinese city[J]. Applied Physics B, 2010, 101(1/2): 465-470.

[20] Mei L, Zhao G Y, Svanberg S. Differential absorption lidar system employed for background atomic mercury vertical profiling in South China[J]. Optics and Lasers in Engineering, 2014, 55: 128-135.

[21]

    Hu S X, Hu H L, Zhang Y C, et al. A new differential absorption lidar for NO2 measurements using Raman-shifted technique[J]. Chinese Optics Letters, 2003, 1(8): 435-437.

[22] Fan G, Zhang T, Fu Y, Dong Y, Chen Z, Liu J, et al. , Temporal and Spatial Distribution Characteristics of Ozone Based on Differential Absorption Lidar in Beijing[J]. Chinese Journal of Lasers, 2014, 41(10): 1014003.  范广强, 张天舒, 付毅宾, 董云升, 陈臻懿, 刘建国, 刘文清, 差分吸收激光雷达监测北京灰霾天臭氧时空分布特征[J], 中国激光, 2014, 41(10): 1014003.

[23] 范广强, 张天舒, 付毅宾, 等. 差分吸收激光雷达监测北京灰霾天臭氧时空分布特征[J]. 中国激光, 2014, 41(10): 1014003.

    Fan G Q, Zhang T S, Fu Y B, et al. Temporal and spatial distribution characteristics of ozone based on differential absorption lidar in Beijing[J]. Chinese Journal of Lasers, 2014, 41(10): 1014003.

[24] Gong W, Ma X, Han G, et al. Method for wavelength stabilization of pulsed difference frequency laser at 1572 nm for CO2 detection lidar[J]. Optics Express, 2015, 23(5): 6151-6170.

[25] Liu H, Chen T, Shu R, et al. Wavelength-locking-free 1.57 μm differential absorption lidar for CO2 sensing[J]. Optics Express, 2014, 22(22): 27675-27680.

[26] Mei L, Brydegaard M. Continuous-wave differential absorption lidar[J]. Laser & Photonics Reviews, 2015, 9(6): 629-636.

[27] Brydegaard M, Gebru A, Svanberg S. Super resolution laser radar with blinking atmospheric particles——application to interacting flying insects[J]. Progress in Electromagnetics Research, 2014, 147: 141-151.

[28] Huseynova T, Waring G O, Roberts C, et al. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes[J]. American Journal of Ophthalmology, 2014, 157(4): 885-893.

[29] Grewal D S, Brar G S, Jain R, et al. Corneal collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus one-year analysis using Scheimpflug imaging[J]. Journal of Cataract & Refractive Surgery, 2009, 35(3): 425-432.

[30] Blais F. Review of 20 years of range sensor development[J]. Journal of Electronic Imaging, 2004, 13(1): 231-243.

[31] Miks A, Novak J, Novak P. Analysis of imaging for laser triangulation sensors under Scheimpflug rule[J]. Optics Express, 2013, 21(15): 18225-18235.

[32] Mei L, Brydegaard M. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system[J]. Optics Express, 2015, 23(24): A1613-A1628.

[33] Chen J C, Li J, Xu J L, et al. 4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd∶YAG slab laser[J]. Optics & Laser Technology, 2014, 63: 50-53.

[34] Zhong L, Ma X. Recent developments in high power semiconductor diode lasers[M]∥Predeep P (Ed.), Optoelectronics-devices and applications. London: InTech, 2011.

[35] Comeron A, Sicard M, Kumar D, et al. Use of a field lens for improving the overlap function of a lidar system employing an optical fiber in the receiver assembly[J]. Applied Optics, 2011, 50(28): 5538-5544.

[36] Guerrero-Rascado J L, Costa M J, Bortoli D, et al. Infrared lidar overlap function: an experimental determination[J]. Optics Express, 2010, 18(19): 20350-20359.

[37] Povey A C, Grainger R G, Peters D M, et al. Estimation of a lidar′s overlap function and its calibration by nonlinear regression[J]. Applied Optics, 2012, 51(21): 5130-5143.

[38] Berezhnyy I. A combined diffraction and geometrical optics approach for lidar overlap function computation[J]. Optics and Lasers in Engineering, 2009, 47(7/8): 855-859.

[39] Kovalev V A, Eichinger W E. Elastic lidar: theory, practice, and analysis methods[M]. Hoboken: John Wiley & Sons, 2004.

[40] Zhu S M, Malmqvist E, Li W S, et al. Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system[J]. Applied Physics B, 2017, 123(7): 211.

[41] Brydegaard M, Malmqvist E, Jansson S, et al. The Scheimpflug lidar method[J]. Proceedings of SPIE, 2017, 10406: 104060I.

[42] Mei L, Zhang L S, Kong Z, et al. Noise modeling, evaluation and reduction for the atmospheric lidar technique employing an image sensor[J]. Optics Communications, 2018, 426: 463-470.

[43] Mei L, Kong Z, Guan P. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies[J]. Optics Express, 2018, 26(6): A260-A274.

[44] Mei L, Guan P, Yang Y, et al. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique[J]. Optics Express, 2017, 25(16): A628-A638.

[45] Mei L, Guan P. Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme[J]. Optics Letters, 2017, 42(18): 3562-3565.

[46]

    梅亮, 孔政. 一种二极管激光器光束准直的方法:CN107346062A[P]. 2017-11-14.

    Mei L, Kong Z. Diode laser beam collimation method: CN107346062A[P]. 2017-11-14.

[47] Zhao G, Malmqvist E, Trk S, et al. Dual-band continuous-wave lidar system employed for particle classification[J]. Photonics Journal (to be published).

[48] Mei L, Guan P, Kong Z。 Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique[J]. Optics Express, 2017, 25(20): A953-A962.

[49] Kirkeby C, Wellenreuther M, Brydegaard M. Observations of movement dynamics of flying insects using high resolution lidar[J]. Scientific Reports, 2016, 6(1): 29083.

[50] Malmqvist E, Jansson S, Trk S, et al. Effective parameterization of laser radar observations of atmospheric fauna[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(3): 6900408.

[51] Zhao G Y, Ljungholm M, Malmqvist E, et al. Inelastic hyperspectral lidar for profiling aquatic ecosystems[J]. Laser & Photonics Reviews, 2016, 10(5): 807-813.

[52] Gao F, Li J W, Lin H Z, et al. Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system[J]. Optics Express, 2017, 25(21): 25515-25522.

梅亮. 沙氏大气激光雷达技术及其研究进展[J]. 激光与光电子学进展, 2018, 55(9): 090004. Mei Liang. Atmospheric Scheimpflug Lidar Technique and Its Progress[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090004.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!