激光与光电子学进展, 2018, 55 (9): 090004, 网络出版: 2018-09-08   

沙氏大气激光雷达技术及其研究进展 下载: 1411次

Atmospheric Scheimpflug Lidar Technique and Its Progress
梅亮 *
作者单位
大连理工大学光电工程与仪器科学学院, 辽宁 大连 116024
摘要
沙氏大气激光雷达技术是近几年来发展起来的一种新型大气激光雷达技术。该技术以高功率连续波二极管激光器作为光源, 图像传感器作为探测器, 在满足沙氏成像原理的条件下实现了对大气回波信号的距离分辨探测。介绍了沙氏大气激光雷达技术的基本原理、技术特点、系统结构及大气回波信号处理的一般方法。总结了近年来沙氏大气激光雷达技术在大气气溶胶及大气气体浓度分布探测等方面的研究进展, 并分析了当前面临的主要挑战。最后对下一步研究工作及未来发展进行了展望。
Abstract
The Scheimpflug lidar (SLidar) technique has been recently developed for atmospheric remote sensing. By utilizing high-power continuous-wave laser diodes as laser sources and area image sensors as detectors, the SLidar technique can measure range-resolved atmospheric backscattering signal when the optical layout satisfies the Scheimpflug principle. This paper presents the principle, features, system architecture as well as the signal processing methods of the SLidar technique. The developments and applications of the SLidar technique in atmospheric aerosol sensing and gas monitoring are summarized in detail. The challenges of the SLidar technique are also discussed. Finally, the future work and the outlook of the SLidar technique are presented.
参考文献

[1] Lenoble J, Remer L, Tanre D. Aerosol remote sensing[M]. Verlag Berlin Heidelberg: Springer, 2013.

[2] Fujii T, Fukuchi T. Laser remote sensing[M]. Boca Raton: Taylor & Francis, 2005.

[3] Liu D, Wang Y J, Wang Z Z, et al. Development of multi-wavelength Raman lidar and its application on aerosol and cloud research[J]. EPJ Web of Conferences, 2016, 119: 25011.

[4] 吕立慧, 刘文清, 张天舒, 等. 基于激光雷达的京津冀地区大气边界层高度特征研究[J]. 激光与光电子学进展, 2017, 54(1): 010101.

    Lü L H, Liu W Q, Zhang T S, et al. Characteristics of boundary layer height in Jing-Jin-Ji area based on lidar[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010101.

[5] 陈莎莎, 徐青山, 徐赤东, 等. 基于微脉冲激光雷达计算整层大气气溶胶光学厚度[J], 光学学报, 2017, 37(7): 0701002.

    Chen S S, Xu Q S, Xu C D, et al. Calculation of whole atmospheric aerosol optical depth based on micro-pulse lidar[J]. Acta Optica Sinica, 2017, 37(7): 0701002.

[6] Wu S H, Song X Q, Liu B Y, et al. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement[J]. Optics Express, 2015, 23(26): 33870-33892.

[7] 狄慧鸽, 侯晓龙, 赵虎, 等. 多波长激光雷达探测多种天气气溶胶光学特性与分析[J]. 物理学报, 2014, 63(24): 244206.

    Di H G, Hou X L, Zhao H, et al. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar[J]. Acta Physica Sinica, 2014, 63(24): 244206.

[8] 邵江锋, 华灯鑫, 汪丽, 等. 全天时紫外高光谱瑞利测温激光雷达系统[J]. 光学学报, 2017, 37(6):0601003.

    Shao J F, Hua D X, Wang L, et al. Full-time lidar system for ultraviolet high spectral Rayleigh temperature measurement[J]. Acta Optica Sinica, 2017, 37(6): 0601003.

[9] Mamouri R E, Papayannis A, Amiridis V, et al. Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece[J]. Atmospheric Measurement Techniques, 2012, 5(7): 1793-1808.

[10] Rogers R R, Hair J W, Hostetler C A, et al. NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation[J]. Atmospheric Chemistry and Physics, 2009, 9(14): 4811-4826.

[11] Engelmann R, Kanitz T, Baars H, et al. EARLINET Raman lidar PollyXT: the neXT generation[J]. Atmospheric Measurement Techniques Discussions, 2015, 8(7): 7737-7780.

[12] Meki K, Yamaguchi K, Li X, et al. Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere[J]. Optics Letters, 1996, 21(17): 1318-1320. DOI: 10. 1364/ol. 21. 001318. [LinkOut]

[13] Barnes J E, Sharma N C P, Kaplan T B. Atmospheric aerosol profiling with a bistatic imaging lidar system[J]. Applied Optics, 2007, 46(15): 2922-2929.

[14] Tao Z M, Liu D, Wang Z Z, et al. Measurements of aerosol phase function and vertical backscattering coefficient using a charge-coupled device side-scatter lidar[J]. Optics Express, 2014, 22(1): 1127-1134.

[15] Rocadenbosch F. Lidar-aerosol sensing[M]∥Encyclopedia of optical engineering. New York: Marcel Dekker, Inc., 2013.

[16] Sullivan J T, McGee T J, Sumnicht G K, et al. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, D. C. region[J]. Atmospheric Measurement Techniques, 2014, 7(10): 3529-3548.

[17] Beniston M, Wolf J P, Benistonrebetez M, et al. Use of lidar measurements and numerical-models in air-pollution research[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D7): 9879-9894.

[18] Fukuchi T, Nayuki T, Cao N W, et al. Differential absorption lidar system for simultaneous measurement of O3 and NO2: system development and measurement error estimation[J]. Optical Engineering, 2003, 42(1): 98-104.

[19] Guan Z G, Lundin P, Mei L, et al. Vertical lidar sounding of atomic mercury and nitric oxide in a major Chinese city[J]. Applied Physics B, 2010, 101(1/2): 465-470.

[20] Mei L, Zhao G Y, Svanberg S. Differential absorption lidar system employed for background atomic mercury vertical profiling in South China[J]. Optics and Lasers in Engineering, 2014, 55: 128-135.

[21]

    Hu S X, Hu H L, Zhang Y C, et al. A new differential absorption lidar for NO2 measurements using Raman-shifted technique[J]. Chinese Optics Letters, 2003, 1(8): 435-437.

[22] Fan G, Zhang T, Fu Y, Dong Y, Chen Z, Liu J, et al. , Temporal and Spatial Distribution Characteristics of Ozone Based on Differential Absorption Lidar in Beijing[J]. Chinese Journal of Lasers, 2014, 41(10): 1014003.  范广强, 张天舒, 付毅宾, 董云升, 陈臻懿, 刘建国, 刘文清, 差分吸收激光雷达监测北京灰霾天臭氧时空分布特征[J], 中国激光, 2014, 41(10): 1014003.

[23] 范广强, 张天舒, 付毅宾, 等. 差分吸收激光雷达监测北京灰霾天臭氧时空分布特征[J]. 中国激光, 2014, 41(10): 1014003.

    Fan G Q, Zhang T S, Fu Y B, et al. Temporal and spatial distribution characteristics of ozone based on differential absorption lidar in Beijing[J]. Chinese Journal of Lasers, 2014, 41(10): 1014003.

[24] Gong W, Ma X, Han G, et al. Method for wavelength stabilization of pulsed difference frequency laser at 1572 nm for CO2 detection lidar[J]. Optics Express, 2015, 23(5): 6151-6170.

[25] Liu H, Chen T, Shu R, et al. Wavelength-locking-free 1.57 μm differential absorption lidar for CO2 sensing[J]. Optics Express, 2014, 22(22): 27675-27680.

[26] Mei L, Brydegaard M. Continuous-wave differential absorption lidar[J]. Laser & Photonics Reviews, 2015, 9(6): 629-636.

[27] Brydegaard M, Gebru A, Svanberg S. Super resolution laser radar with blinking atmospheric particles——application to interacting flying insects[J]. Progress in Electromagnetics Research, 2014, 147: 141-151.

[28] Huseynova T, Waring G O, Roberts C, et al. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes[J]. American Journal of Ophthalmology, 2014, 157(4): 885-893.

[29] Grewal D S, Brar G S, Jain R, et al. Corneal collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus one-year analysis using Scheimpflug imaging[J]. Journal of Cataract & Refractive Surgery, 2009, 35(3): 425-432.

[30] Blais F. Review of 20 years of range sensor development[J]. Journal of Electronic Imaging, 2004, 13(1): 231-243.

[31] Miks A, Novak J, Novak P. Analysis of imaging for laser triangulation sensors under Scheimpflug rule[J]. Optics Express, 2013, 21(15): 18225-18235.

[32] Mei L, Brydegaard M. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system[J]. Optics Express, 2015, 23(24): A1613-A1628.

[33] Chen J C, Li J, Xu J L, et al. 4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd∶YAG slab laser[J]. Optics & Laser Technology, 2014, 63: 50-53.

[34] Zhong L, Ma X. Recent developments in high power semiconductor diode lasers[M]∥Predeep P (Ed.), Optoelectronics-devices and applications. London: InTech, 2011.

[35] Comeron A, Sicard M, Kumar D, et al. Use of a field lens for improving the overlap function of a lidar system employing an optical fiber in the receiver assembly[J]. Applied Optics, 2011, 50(28): 5538-5544.

[36] Guerrero-Rascado J L, Costa M J, Bortoli D, et al. Infrared lidar overlap function: an experimental determination[J]. Optics Express, 2010, 18(19): 20350-20359.

[37] Povey A C, Grainger R G, Peters D M, et al. Estimation of a lidar′s overlap function and its calibration by nonlinear regression[J]. Applied Optics, 2012, 51(21): 5130-5143.

[38] Berezhnyy I. A combined diffraction and geometrical optics approach for lidar overlap function computation[J]. Optics and Lasers in Engineering, 2009, 47(7/8): 855-859.

[39] Kovalev V A, Eichinger W E. Elastic lidar: theory, practice, and analysis methods[M]. Hoboken: John Wiley & Sons, 2004.

[40] Zhu S M, Malmqvist E, Li W S, et al. Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system[J]. Applied Physics B, 2017, 123(7): 211.

[41] Brydegaard M, Malmqvist E, Jansson S, et al. The Scheimpflug lidar method[J]. Proceedings of SPIE, 2017, 10406: 104060I.

[42] Mei L, Zhang L S, Kong Z, et al. Noise modeling, evaluation and reduction for the atmospheric lidar technique employing an image sensor[J]. Optics Communications, 2018, 426: 463-470.

[43] Mei L, Kong Z, Guan P. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies[J]. Optics Express, 2018, 26(6): A260-A274.

[44] Mei L, Guan P, Yang Y, et al. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique[J]. Optics Express, 2017, 25(16): A628-A638.

[45] Mei L, Guan P. Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme[J]. Optics Letters, 2017, 42(18): 3562-3565.

[46]

    梅亮, 孔政. 一种二极管激光器光束准直的方法:CN107346062A[P]. 2017-11-14.

    Mei L, Kong Z. Diode laser beam collimation method: CN107346062A[P]. 2017-11-14.

[47] Zhao G, Malmqvist E, Trk S, et al. Dual-band continuous-wave lidar system employed for particle classification[J]. Photonics Journal (to be published).

[48] Mei L, Guan P, Kong Z。 Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique[J]. Optics Express, 2017, 25(20): A953-A962.

[49] Kirkeby C, Wellenreuther M, Brydegaard M. Observations of movement dynamics of flying insects using high resolution lidar[J]. Scientific Reports, 2016, 6(1): 29083.

[50] Malmqvist E, Jansson S, Trk S, et al. Effective parameterization of laser radar observations of atmospheric fauna[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(3): 6900408.

[51] Zhao G Y, Ljungholm M, Malmqvist E, et al. Inelastic hyperspectral lidar for profiling aquatic ecosystems[J]. Laser & Photonics Reviews, 2016, 10(5): 807-813.

[52] Gao F, Li J W, Lin H Z, et al. Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system[J]. Optics Express, 2017, 25(21): 25515-25522.

梅亮. 沙氏大气激光雷达技术及其研究进展[J]. 激光与光电子学进展, 2018, 55(9): 090004. Mei Liang. Atmospheric Scheimpflug Lidar Technique and Its Progress[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090004.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!