激光与光电子学进展, 2018, 55 (8): 082401, 网络出版: 2018-08-13   

金属/化合物/石墨烯复合纳米阵列结构的LSPR特性 下载: 631次

LSPR Properties of Metal-Compound-Graphene Composite Nanoarray Structure
作者单位
东北石油大学电子科学学院, 黑龙江 大庆 163318
摘要
对金属/化合物/石墨烯复合纳米阵列的消光特性及电场分布进行了仿真研究。研究结果表明,随着石墨烯原子层数的增加,偶极子共振峰强度逐渐增大;改变二层板的结构和石墨烯的厚度,偶极子共振峰峰位由660 nm蓝移到510 nm;外界介质折射率对LSPR的共振峰有着显著的影响;当折射率固定时,石墨烯柱与金属Ag板的底角及石墨烯柱与SiO2板的顶角处的电场增强现象较为强烈。
Abstract
The extinction property and electric field distribution of the metal-compound-graphene composite nanoarray are simulated. The research results show that the dipole resonance peak intensity gradually increases with the increase of the atomic layer number of graphene. The dipole resonance peak position is blue-shifted from 680 nm to 500 nm when the two laminate structures and the graphene thickness are changed. The refractive index of external media has a significant influence on the resonance peak of LSPR. When the refractive index is fixed, the electric fields at the base angle between graphene column and metal Ag board and at the apex angel between graphene column and SiO2 board are strongly enhanced.
参考文献

[1] Monzn-Hernndez D, Villatoro J. High resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor[J]. Sensors and Actuators B: Chemical, 2006, 115(1): 227-231.

[2] Shao L Y, Shevchenko Y, Albert J. Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors[J]. Optics Express, 2010, 18(11): 11465-11471.

[3] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677.

[4] Knight M W, Halas N J. Nanoshells to nanoeggs to nanocups: Optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit[J]. New Journal of Physics, 2008, 10: 119-125.

[5] Wu D J, Jiang S M, Liu X J. Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell[J]. The Journal of Physical Chemistry C, 2011, 115(48): 23797-23801.

[6] Kahane S V, Sudarsan V, Mahamuni S. A study of charge transfer mechanism and optical properties of Au-CdS core-shell nanocrystals[J]. Journal of Luminescence, 2014, 147: 353-357.

[7] 张明, 吕靖薇, 刘昭廷, 等. 银纳米球阵列的表面等离子体共振特性[J]. 激光与光电子学进展, 2016, 53(8): 081601.

    Zhang M, Lü J W, Liu Z T, et al. Surface plasmon resonance properties of silver nanosphere arrays[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081601.

[8] Zhu J, Ren Y J. The effect of negative curvature on the plasmonic coupling of concentric core-shell metallic nanostructures[J]. Plasmonics, 2014, 9(5): 1077-1084.

[9] Yuan Y Q, Hu D, Li H, et al. Theoretical investigations for surface plasmon resonance based optical fiber tip sensor[J]. Sensors and Actuators B: Chemical, 2013, 188: 757-760.

[10] Tu M H, Sun T, Grattan K T V. Optimization of gold-nanoparticle-based optical fiber surface plasmon resonance-based sensors[J]. Sensors and Actuators B: Chemical, 2012, 164(1): 43-53.

[11] Takahata R, Yamazoe S, Koyasu K, et al. Surface plasmon resonance in gold ultrathin nanorods and nanowires[J]. Journal of American Chemical Society, 2014, 136(24): 8489-8491.

[12] 范晓敏, 邹文君, 顾仁傲, 等. Au@SiO2核壳纳米粒子的制备及其表面增强拉曼光谱[J]. 高等学校化学学报, 2008, 29(1): 130-134.

    Fan X M, Zou W J, Gu R A, et al. Preparation of Au@SiO2 core-shell nanoparticles and their surface-enhanced Raman spectra[J]. Chemical Journal of Chinese Universities, 2008, 29(1): 130-134.

[13] 付光杰, 张敬萍, 吕靖薇, 等. Au-中间层-Ag纳米核壳的法诺共振特性研究[J]. 兵器材料科学与工程, 2017, 40(1): 8-13.

    Fu G J, Zhang J P, Lü J W, et al. Fano resonance properties of Au-interlayer-Ag multilayer nanoshells[J]. Ordnance Material Science and Engineering, 2017, 40(1): 8-13.

[14] 张兴坊, 张腊梅, 范群芳, 等. 金纳米球壳结构局域表面等离子体共振调谐特性[J]. 中国激光, 2011, 38(9): 0910001.

    Zhang X F, Zhang L M, Fan Q F, et al. Tunable localized surface plasmon resonance of gold nanoshell particle[J]. Chinese Journal of Lasers, 2011, 38(9): 0910001.

[15] 秦小娟, 郭亚楠, 薛文瑞. 带有增益介质包层的两个平行圆柱形纳米金属棒构成的表面等离子体光波导的数值模拟[J]. 中国激光, 2011, 38(3): 0310001.

    Qin X J, Guo Y N, Xue W R. Numerical simulation of a surface plasmonic waveguide with double parallel columniform metallic nanorods coated with gain medium[J]. Chinese Journal of Lasers, 2011, 38(3): 0310001.

[16] Cortie M, Ford M. A plasmon-induced current loop in gold semi-shells[J]. Nanotechnology, 2007, 18(23): 5704-5706.

[17] 张敬萍, 付光杰, 吕靖薇, 等. 对称性破缺Au-ITO-Ag纳米核壳的光学特性研究[J]. 兵器材料科学与工程, 2017, 40(3): 46-51.

    Zhang J P, Fu G J, Lü J W, et al. Optical properties of symmetry-breaking Au-ITO-Ag multilayer nanoshells[J]. Ordnance Material Science and Engineering, 2017, 40(3): 46-51.

[18] 赵冬娥, 赵豫姝. 表面等离子体共振传感理论仿真研究[J]. 测试技术学报, 2008(3): 265-268.

    Zhao D E, Zhao Y S. Research on SPR sensors using theoretical simulation[J]. Journal of Test and Measurement Technology, 2008(3): 265-268.

[19] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review[J]. Sensors and Actuators B: Chemical, 1999, 54(1/2): 3-15.

[20] Yuan Y Q, Hu D, Hua L, et al. Theoretical investigations for surface plasmon resonance based optical fiber tip sensor[J]. Sensors and Actuators B: Chemical, 2013, 188: 757-760.

[21] 何柏林, 熊磊. 金属表面纳米化及其对材料性能影响的研究进展[J]. 兵器材料科学与工程, 2016, 39(2): 116-120.

    He B L, Xiong L. Research progress in effect of metal surface nanocrystallization on material properties[J]. Ordnance Material Science and Engineering, 2016, 39(2): 116-120.

[22] 牟海维, 王宏瑾, 王强, 等. 表面等离子体共振理论仿真研究[J]. 光学仪器, 2011, 33(2): 1-6.

    Mu H W, Wang H J, Wang Q, et al. Research on theoretical simulation of SPR[J]. Optical Instruments, 2011, 33(2): 1-6.

[23] 毕卫红, 马敬云, 杨凯丽, 等. 石墨烯光纤及其应用[J]. 激光与光电子进展, 2017, 54(4): 040002.

    Bi W H, Ma J Y, Yang K L, et al. Graphene-based optical fiber and its applications[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040002.

[24] 万鹏, 杨翠红. 石墨烯TE模表面等离子体波和表面等离子体波导的特性[J]. 光学学报, 2017, 37(11): 1124002.

    Wan P, Yang C H. Properties of graphene TE mode surface plasmons and surface plasmon waveguides[J]. Acta Optica Sinica, 2017, 37 (11): 1124002.

[25] 黄梦, 顾昌晟, 孙兵, 等. 基于石墨烯涂覆倾斜光纤光栅的折射率传感[J]. 中国激光, 2017, 44(12): 1210001.

    Huang M, Gu C S, Sun B, et al. Refractive index sensor based on tilted-fiber Bragg grating coated with graphene[J].Chinese Journal of Lasers, 2017, 44(12): 1210001.

[26] Kravets V G, Grigorenko A N, Nair R R, et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van hove peak in absorption[J]. Physical Review B: Covering Condensed Matter and Materials Physics, 2010, 81(15): 155413.

[27] Amendola V. Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method[J]. Physical Chemistry Chemical Physics, 2016, 18: 2230-2241.

[28] Maurer T, Nicolas R, Lévêque G, et al. Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film[J]. Plasmonics, 2014, 9(3): 507-512.

李伟, 刘超, 吕靖薇, 刘昭廷, 汪发美. 金属/化合物/石墨烯复合纳米阵列结构的LSPR特性[J]. 激光与光电子学进展, 2018, 55(8): 082401. Li Wei, Liu Chao, Lü Jingwei, Liu Zhaoting, Wang Famei. LSPR Properties of Metal-Compound-Graphene Composite Nanoarray Structure[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082401.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!