中国激光, 2017, 44 (7): 0703002, 网络出版: 2017-07-05   

2D材料和准2D材料的非线性光学特性及应用 下载: 2047次

2D Materials and Quasi-2D Materials: Nonlinear Optical Properties and Corresponding Applications
马志军 1,2,*魏荣妃 1,2胡忠亮 1,2邱建荣 1,2,3
作者单位
1 华南理工大学发光材料与器件国家重点实验室, 广东 广州 510640
2 光纤激光材料和应用广东省重点实验室, 广东 广州 510640
3 浙江大学光电系, 浙江 杭州 310027
引用该论文

马志军, 魏荣妃, 胡忠亮, 邱建荣. 2D材料和准2D材料的非线性光学特性及应用[J]. 中国激光, 2017, 44(7): 0703002.

Ma Zhijun, Wei Rongfei, Hu Zhongliang, Qiu Jianrong. 2D Materials and Quasi-2D Materials: Nonlinear Optical Properties and Corresponding Applications[J]. Chinese Journal of Lasers, 2017, 44(7): 0703002.

参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

[3] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

[4] Meric I, Han M Y, Young A F, et al. Current saturation in zero-bandgap, topgated graphene field-effect transistors[J]. Nature Nanotechnolgy, 2008, 3(11): 654-659.

[5] Freitag M, Low T, Xia F N, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 2013, 7(1): 53-59.

[6] Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10): 630-634.

[7] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758.

[8] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[9] Tian H, Chin M L, Najmaei S, et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides[J]. Nano Research, 2016, 9(6): 1543-1560.

[10] Pospischil A, Mueller T. Optoelectronic devices based on atomically thin transition metal dichalcogenides[J]. Applied Science, 2016, 6(3): 78.

[11] Liu J X, Cao H, Jiang B, et al. Newborn 2D materials for flexible energy conversion and storage[J]. Science China Materials, 2016, 59(6): 459-474.

[12] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226.

[13] Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nature Nanotechnology, 2014, 9(2): 111-115.

[14] Peng B, Ang P K, Loh K P. Two-dimensional dichalcogenides for light-harvesting applications[J]. Nano Today, 2015, 10(2): 128-137.

[15] Cao T, Wang G, Han W P, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communication, 2012, 3: 887.

[16] Wang H T, Yuan H T, Hong S S, et al. Physical and chemical tuning of two-dimensional transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9): 2664-2680.

[17] Asahina H, Morita A. Band-structure and optical-properties of black phosphorus[J]. Journal of Physics C: Solid State Physics, 1984, 17(11): 1839-1852.

[18] Low T,Rodin A S, Carvalho A, et al. Tunable optical properties of multilayer black phosphorus thin films[J]. Physysical Review B, 2014, 90(7): 075434.

[19] Liang L B, Wang J, Lin W Z, et al. Electronic bandgap and edge reconstruction in phosphorene materials[J]. Nano Letters, 2014, 14(11): 6400-6406.

[20] Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communication, 2014, 5: 4475.

[21] Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6): 3347-3352.

[22] Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nature Photonics, 2015, 9(4): 247-252.

[23] Yuan H T, Liu X G, Afshinmanesh F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 2015, 10(8): 707-713.

[24] Rodin A S, Carvalho A, Castro Neto A H. Strain-induced gap modification in black phosphorus[J]. Physical Review Letters, 2014, 112(17): 176801.

[25] Xia F N, Wang H, Jia Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communication, 2014, 5: 4458.

[26] Hui F, Pan C B, Shi Y Y, et al. On the use of two dimensional hexagonal boron nitride as dielectric[J]. Microelectronic Engineering, 2016, 163: 119-133.

[27] Wang L F, Wu B, Chen J S, et al. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors[J]. Advanced Materials, 2014, 26(10): 1559-1564.

[28] Song L, Ci L J, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Letters, 2010, 10(8): 3209-3215.

[29] Appelbaum I, Drew H D, Fuhrer M S. Proposal for a topological plasmon spin rectifier[J]. Applied Physics Letters, 2011, 98(2): 023103.

[30] Wunderlich J, Park B G, Irvine A C, et al. Spin hall effect transistor[J]. Science, 2010, 330(6012): 1801-1804.

[31] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.

[32] Li P X, Zhang G J, Zhang H, et al. Q-switched mode-locked Nd∶YVO4 laser by topological insulator Bi2Te3 saturable absorber[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1912-1915.

[33] Sotor J, Sobon G, Macherzynski W, et al. Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber[J]. Laser Physics Letters, 2014, 11(5): 055102.

[34] Wong S L, Liu H F, Chi D Z. Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(3): 9-28.

[35] Yan K, Fu L, Peng H L, et al. Designed CVD growth of graphene via process engineering[J]. Accounts of Chemical Research, 2013, 46(10): 2263-2274.

[36] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1420.

[37] Han J H, Lee S, Cheon J. Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals[J]. Chemical Society Reviews, 2013, 42(7): 2581-2591.

[38] Li H, Lu G, Wang Y L, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small, 2013, 9(11): 1974-1981.

[39] Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001.

[40] Hong S S, Kundhikanjana W, Cha J J, et al. Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy[J]. Nano Letters, 2010, 10(8): 3118-3122.

[41] Li L H, Chen Y, Behan G, et al. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling[J]. Journal of Materials Chemistry, 2011, 21(32): 11862-11866.

[42] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.

[43] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568.

[44] Hughes J M, Aherne D, Coleman J N. Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions[J]. Journal of Applied Polymer Science, 2013, 127(6): 4483-4491.

[45] Hernandez Y, Lotya M, Rickard D, et al. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J]. Langmuir, 2010, 26(5): 3208-3213.

[46] O′Neill A, Khan U, Nirmalraj P N, et al. Graphene dispersion and exfoliation in low boiling point solvents[J]. The Journal of Physical Chemisty C, 2011, 115(13): 5422-5428.

[47] Bourlinos A B, Georgakilas V, Zboril R, et al. Liquid-phase exfoliation of graphite towards solubilized graphenes[J]. Small, 2009, 5(16): 1841-1845.

[48] Khan U, O′Neill A, Lotya M, et al. High-concentration solvent exfoliation of graphene[J]. Small, 2010, 6(7): 864-871.

[49] Magda G Z, Peto J, Dobrik G, et al. Exfoliation of large-area transition metal chalcogenide single layers[J]. Scientific Reports, 2015, 5: 14714.

[50] Zheng J, Zhang H, Dong S H, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nature Communication, 2014, 5: 2995.

[51] Cunningham G, Lotya M, Cucinotta C S, et al. Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds[J]. ACS Nano, 2012, 6(4): 3468-3480.

[52] Smith R J, King P J, Lotya M, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Advanced Materials, 2011, 23(34): 3944-3948.

[53] Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communication, 2015, 6: 8563.

[54] Brent J R, Savjani N, Lewis E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014, 50(87): 13338-13341.

[55] Kang J, Wood J D, Wells S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus[J]. ACS Nano, 2015, 9(4): 3596-3604.

[56] Ren Long, Liu Yundan, Hao Guolin. Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route[J]. Journal of Materials Chemistry, 2012, 22(11): 4921-4926.

[57] Warner J H, Rummeli M H, Bachmatiuk A, et al. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation[J]. ACS Nano, 2010, 4(3): 1299-1304.

[58] Li X L, Hao X P, Zhao M W, et al. Exfoliation of hexagonal boron nitride by molten hydroxides[J]. Advanced Materials, 2013, 25(15): 2200-2204.

[59] Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 277-283.

[60] Jang J T, Jeong S, Seo J W, et al. Ultrathin zirconium disulfide nanodiscs[J]. Journal of the American Chemical Society, 2011, 133(20): 7636-7639.

[61] Seo J W, Jun Y W, Park S W, et al. Two-dimensional nanosheet crystals[J]. Angewandte Chemie International Edition, 2007, 46(46): 8828-8831.

[62] Gao M R, Cao X, Gao Q, et al. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation[J]. ACS Nano, 2014, 8(4): 3970-3978.

[63] Altavilla C, Sarno M, Ciambelli P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo,W)[J]. Chemistry of Materials, 2011, 23(17): 3879-3885.

[64] Jeong S, Yoo D, Jang J T, et al. Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols[J]. Journal of the American Chemical Society, 2012, 134(44): 18233-18236.

[65] Yoo D, Kim M, Jeong S, et al. Chemical synthetic strategy for single-layer transition-metal chalcogenides[J]. Journal of the American Chemical Society, 2014, 136(42): 14670-14673.

[66] Obraztsov A N. Chemical vapour deposition making graphene on a large scale[J]. Nature Nanotechnology, 2009, 4(4): 212-213.

[67] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.

[68] Niu T C, Zhou M, Zhang J L, et al. Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene[J]. Journal of the American Chemical Society, 2013, 135(22): 8409-8414.

[69] Tang S J, Wang H M, Wang H S, et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride[J]. Nature Communication, 2015, 6: 6499.

[70] Shi Y M, Hamsen C, Jia X T, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition[J]. Nano Letters, 2010, 10(10): 4134-4139.

[71] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578.

[72] Yu Q K, Jauregui L A, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 443-449.

[73] Liang T, He G, Huang G, et al. Graphene nucleation preferentially at oxygen-rich Cu sites rather than on pure Cu surface[J]. Advanced Materials, 2015, 27: 6404-6410.

[74] Hao Y, Wang L, Liu Y, et al. Oxygen-activated growth and bandgap tenability of large single-crystal bilayer graphene[J]. Nature Nanotechnology, 2016, 11: 426-431.

[75] Liang T, Luan C, Chen H, et al. Exploring oxygen in graphene chemical vapor deposition synthesis[J]. Nanoscale, 2017, 9(11): 3719-3735.

[76] Zhang Y, Zhang Y F, Ji Q Q, et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary[J]. ACS Nano, 2013, 7(10): 8963-8971.

[77] Shi Y M, Zhou W, Lu A Y, et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates[J]. Nano Letters, 2012, 12(6): 2784-2791.

[78] Cong C X, Shang J Z, Wu X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition[J]. Advanced Optical Materials, 2014, 2(2): 131-136.

[79] Piper W W, Polich S J. Vapor-phase growth of single crystals of II-VI compounds[J]. Journal of Applied Physics, 1961, 32(7): 1278-1279.

[80] Li H, Cao J, Zheng W S, et al. Controlled synthesis of topological insulator nanoplate arrays on mica[J]. Journal of the American Chemical Society, 2012, 134(14): 6132-6135.

[81] Sun Z H, Chang H X. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology[J]. ACS Nano, 2014, 8(5): 4133-4156.

[82] Kong D S, Dang W H, Cha J J, et al. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential[J]. Nano Letters, 2010, 10(6): 2245-2250.

[83] Kim K K, Hsu A, Jia X T, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J]. Nano Letters, 2012, 12(1): 161-166.

[84] Sutter P, Lahiri J, Albrecht P, et al. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films[J]. ACS Nano, 2011, 5(9): 7303-7309.

[85] Lee K H, Shin H J, Lee J, et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics[J]. Nano Letters, 2012, 12(2): 714-718.

[86] Ohuchi F S, Parkinson B A, Ueno K, et al. Vanderwaals epitaxial-growth and characterization of MoSe2 thin-films on SnS2[J]. Journal of Applied Physics, 1990, 68(5): 2168-2175.

[87] Ueno K, Saiki K, Shimada T, et al. Epitaxial-growth of transition-metal dichalcogenides on cleaved faces of mica[J]. Journal of Vacuum Science and Technology A: Vacuum, Surface, and Films, 1990, 8(1): 68-72.

[88] Lin Y C, Chang C Y S, Ghosh R K, et al. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene[J]. Nano Letters, 2014, 14(12): 6936-6941.

[89] Yang W, Chen G R, Shi Z W, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nature Materials, 2013, 12(9): 792-797.

[90] Yan A M, Velasco J, Kahn S, et al. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles[J]. Nano Letters, 2015, 15(10): 6324-6331.

[91] Azizi A, Eichfeld S, Geschwind G, et al. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides[J]. ACS Nano, 2015, 9(5): 4882-4890.

[92] Liu X L, Balla I, Bergeron H, et al. Rotationally commensurate growth of MoS2 on epitaxial graphene[J]. ACS Nano, 2016, 10(1): 1067-1075.

[93] Listed N. The rise and rise of graphene[J]. Nature Nanotechnology, 2010, 5(11): 755.

[94] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.

[95] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum hall effect and Berry′s phase in graphene[J]. Nature, 2005, 438(7065): 201-204.

[96] Rangel N L, Seminario J M. Vibronics and plasmonics based graphene sensors[J]. The Journal of Chemical Physics, 2010, 132(12): 03B611.

[97] Banerjee S K, Register L F, Tutuc E, et al. Graphene for CMOS and beyond CMOS applications[J]. Proceedings of the IEEE, 2010, 98(12): 2032-2046.

[98] Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010, 5(7): 487-496.

[99] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

[100] 覃信茂, 谢卓成, 谢 泉. 石墨烯改性研究进展[J]. 电子元件与材料, 2014, 33(3): 1-4.

    Qin Xinmao, Xie Zhuocheng, Xie Quan. Research progress on the modification of graphene[J]. Electronic Components and Materials, 2014, 33(3): 1-4.

[101] Zhang H J, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.

[102] Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798.

[103] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2012, 12(1): 526-526.

[104] Liu L T, Kumar S B, Ouyang Y, et al. Performance limits of monolayer transition metal dichalcogenide transistors[J]. IEEE Transactions on Electron Devices, 2011, 58(9): 3042-3047.

[105] Chang K, Chen W. L-cysteine-assisted synthesis of layered MoS2/grapheme composites with excellent electrochemical performance for lithium ion batteriesl[J]. ACS Nano, 2011, 5(6): 4720-4728.

[106] Xie J F, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40): 5807-5813.

[107] Koenig S P, Doganov R A, Schmidt H, et al. Electric field effect in ultrathin black phosphorus[J]. Applied Physics Letters, 2014, 104(10): 103106.

[108] Liu H, Du Y C, Deng Y X, et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743.

[109] 周炳琨, 陈倜嵘. 激光原理[M]. 北京: 国防工业出版社, 2000: 256-340.

[110] Wang J, Hernandez Y, Lotya M, et al. Broadband nonlinear optical response of graphene dispersions[J]. Advanced Materials, 2009, 21(23): 2430-2435.

[111] Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

[112] Yu H H, Chen X F, Zhang H J, et al. Large energy pulse generation modulated by graphene bpitaxially grown on silicon carbide[J]. ACS Nano, 2010, 4(12): 7582-7586.

[113] Zhang H, Tang D Y, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 2010, 96(11): 111112.

[114] Ma J, Xie G Q, Lv P, et al. Graphene mode-locked femtosecond laser at 2 μm wavelength[J]. Optics Letters, 2012, 37(11): 2085-2087.

[115] Obraztsova E D, Tausenev A V. Graphene for laser applications[EB/OL].[2017-02-13]. https://www.researchgate.net/publication/267783284_Graphene_for_laser_applications.

[116] Zheng Z W, Zhao C J, Lu S B, et al. Microwave and optical saturable absorption in graphene[J]. Optics Express, 2012, 20(21): 23201-23214.

[117] Hendry E, Hale P J, Moger J, et al. Coherent nonlinear optical response of graphene[J]. Physical Review Letters, 2010, 105(9): 097401.

[118] Krishna M B M, Kumar V P, Venkatramaiah N, et al. Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials[J]. Applied Physics Letters, 2011, 98(8): 081106.

[119] Chen W, Wang G, Qin S Q, et al. The nonlinear optical properties of coupling and decoupling graphene layers[J]. AIP Advances, 2013, 3(4): 042123.

[120] Zhang Y, Liu, T, Meng B,et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Natcommun, 2013, 4: 1811-1821.

[121] Li X, Wu K, Sun Z, et al. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers[J]. Scientific Reports, 2016, 6: 25266-25274.

[122] Li X, Yu X, Sun Z, et al. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction[J]. Scientific Reports, 2015, 5: 16624-16631.

[123] Li X, Tang Y, Yan Z, et al. Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1101107.

[124] Bernard F Z H, Gorza S P. Towards mode-locked fiber laser using topological insulators[C]. Optical Society of America, 2012: NIh 1A.5.

[125] Zhao C J, Zou Y H, Chen Y. Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker[J]. Optics Express, 2012, 20(25): 27888-27895.

[126] Zhao C J, Zhang H, Qi X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101: 211106.

[127] Lu S B, Zhao C J, Zou Y H, et al. Third order nonlinear optical property of Bi2Se3[J]. Optics Express, 2013, 21(2): 2072-2082.

[128] Tang P H, Zhang X Q, Zhao C J, et al. Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er∶YAG ceramiclaser[J]. IEEE Photonics Journal, 2013, 5(2): 1500707.

[129] Luo Z Q, Liu C, Huang Y Z, et al. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1-8.

[130] Jung M, Lee J, Koo J, et al. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator[J]. Optics Express, 2014, 22(7): 7865-7874.

[131] He X, Zhang H, Lin W, et al. PVP-assisted solvothermal synthesis of high-yielded Bi2Te3 hexagonal nanoplates: application in passively Q-switched fiber laser[J]. Scientific Reports, 2015, 5: 15868.

[132] Zhang H, He X, Lin W, et al. Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets[J]. Optics Express, 2015, 23(10): 13376-13383.

[133] Wang K P, Wang J, Fan J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 Nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267.

[134] Zhang X Y, Zhang, S, F, Chang C X, et al. Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance[J]. Nanoscale, 2015, 7(7): 2978-2986.

[135] Wang K P, Feng Y Y, Chang C X, et al. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors[J]. Nanoscale, 2014, 6(18): 10530-10535.

[136] Duan S S, Yang K, Wang Z H, et al. Fabrication of highly stretchable conductors based on 3D printed porous poly (dimethylsiloxane) and conductive carbon nanotubes/graphene Network[J]. ACS Applied Materials and Interfaces, 2016, 8(3): 2187-2192.

[137] Zhang H, Lu S B, Zheng J, et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.

[138] Zhou K G, Zhao M, Chang M J, et al. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets[J]. Small, 2015, 11(6): 694-701.

[139] Ouyang Q Y, Yu H L, Zhang K, et al. Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films[J]. Journal of Materials Chemistry C, 2014, 2(31): 6319-6325.

[140] Mao D, Wang Y D, Ma C J, et al. WS2 mode-locked ultrafast fiber laser[J]. Scientific Reports, 2015, 5: 7965.

[141] Wei R F, Zhang H, Hu Z L, et al. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets[J]. Nanotechnology, 2016, 27(30): 305203.

[142] Wei R F, Zhang H, Tian X L, et al. MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser[J]. Nanoscale, 2016, 8(14): 7704-7710.

[143] Wei R F, Zhang H, He X, et al. Versatile preparation of ultrathin MoS2 nanosheets with reverse saturable absorption response[J]. Optics Materials Express, 2015, 5(8): 1807-1814.

[144] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194.

[145] Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

[146] Xu Y H, Wang Z T, Guo Z N, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.

[147] Sotor J, Sobon G, Kowalczyk M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 3885-3888.

[148] Zhang B T, Lou F, Zhao R W, et al. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser[J]. Optics Letters, 2015, 40(16): 3691-3694.

[149] Qin Z P, Xie G Q, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718.

[150] Yu H, Zheng X, Yin K, et al. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets[J]. Optical Materials Express, 2016, 6(2): 603-609.

[151] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413.

[152] Tan D Z, Yamada Y, Zhou S F, et al. Carbon nanodots with strong nonlinear optical response[J]. Carbon, 2014, 69: 638-640.

[153] Gieseking R L, Mukhopadhyay S, Risko C, et al. Impact of the nature of the excited-state transition dipole moments on the third-order nonlinear optical response of polymethine dyes for all-optical switching applications[J]. ACS Photonics, 2014, 1(3): 261-269.

[154] Maier S A. Plasmonics: fundamental and applications[M]. Berlin: Springer Science and Business Media, 2007.

[155] 李志远, 李家方. 金属纳米结构表面等离子体共振的调控和利用[J]. 科学通报, 2011, 56(32): 2631-2661.

    Li Z Y, Li J F. Recent progress in engineering and application of surface plasmon resonance in metal nanostructures[J]. Chinese Science Bull, 2011, 56: 2631-2661.

[156] Ricard D, Roussignol P, Flytzanis C. Surface-mediated enhancement of optical-phase conjugation in metal colloids[J]. Optics Letters, 1985, 10(10): 511-513.

[157] Tanahashi I, Manabe Y, Tohda T, et al. Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method[J]. Journal of Applied Physics, 1996, 79(3): 1244-1249.

[158] Liao H B, Xiao R F, Wang H, et al. Large third-order optical nonlinearity in Au∶TiO2 composite films measured on a femtosecond time scale[J]. Applied Physics Letters, 1998, 72(15): 1817-1819.

[159] Ballesteros J M, Serna R, Solis J, et al. Pulsed laser deposition of Cu∶Al2O3 nanocrystal thin films with high third-order optical susceptibility[J]. Applied Physics Letters, 1997, 71(17): 2445-2447.

[160] Karthikeyan B, Anija M, Philip R. In situ synthesis and nonlinear optical properties of Au∶Ag nanocomposite polymer films[J]. Applied Physics Letters, 2006, 88(5): 053104.

[161] Porel S, Singh S, Harsha S S, et al. Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting[J]. Chemistry of Materials, 2005, 17(1): 9-12.

[162] 杨光陈, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性[J]. 物理学报, 2007, 56(2): 1182-1187.

    Yang G C, Chen Z H. Large optical nonliearities in Ag-doped BaTiO3 nanocomposite films[J]. Acta Physical Sinica, 2007, 56(2): 1182-1187.

[163] Wang K, Long H, Fu M, et al. Size-related third-order optical nonlinearities of Au nanoparticle arrays[J]. Optics Express, 2010, 18(13): 13874-13879.

[164] Fan D F, Mou C B, Bai X K, et al. Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber[J]. Optics Express, 2014, 22(15): 18537-18542.

[165] Jiang T, Xu Y, Tian Q J, et al. Passively Q-switching induced by gold nanocrystals[J]. Applied Physics Letters, 2012, 101(15): 151122.

[166] Slocik J M, Stone M O, Naik R R. Synthesis of gold nanoparticles using multifunctional peptides[J]. Small, 2005, 1(11): 1048-1052.

[167] 严 亚, 李津如, 杨 云. 单分散球状纳米金颗粒的合成[J]. 化学进展, 2009, 21(5): 971-981.

    Yan Ya, Li Jinru, Yang Yun. Synthesis of spherical monodisperse gold nanoparticles[J]. Progress in Chemistry, 2009, 21(5): 971-981.

[168] Brioude A, Jiang X C, Pileni M P. Optical properties of gold nanorods: DDA simulations supported by experiments[J]. The Journal of Physical Chemistry B, 2005, 109(27): 13138-13142.

[169] Wu H Y, Huang W L, Huang M H. Direct high-yield synthesis of high aspect ratio gold nanorods[J]. Crystal Growth and Design, 2007, 7(4): 831-835.

[170] De Boni L, Wood E L, Toro C, et al. Optical saturable absorption in gold nanoparticles[J]. Plasmonics, 2008, 3(4): 171-176.

[171] Li J F, Liu S Y, Liu Y, et al. Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods[J]. Applied Physics Letters, 2010, 96(26): 263103.

[172] Olesiak-Banska J, Gordel M, Kolkowski R, et al. Third-order nonlinear optical properties of colloidal gold nanorods[J]. The Journal of Physical Chemisty C, 2012, 116(25): 13731-13737.

[173] 焦 洋, 孙晓泉, 王志荣, 等. 贵金属纳米粒子及其复合物的非线性光学性能和应用研究进展[J]. 材料导报, 2006, 20(Z1): 188-192.

    Jiao Y, Sun X Q, Wang Z R, et al. Nonlinear optical properties and applications of noble metal nanoparticles and nanocomposites[J]. Materials Reviews, 2006, 20(Z1): 188-192.

[174] Elim H I, Yang J, Lee J Y, et al. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods[J]. Applied Physics Letters, 2006, 88(8): 083107.

[175] Wang K, Long H, Fu M, et al. Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array[J]. Optics Letters, 2010, 35(10): 1560-1562.

[176] Lamarre J M, Billard F, Kerboua C H, et al. Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix[J]. Optics Communications, 2008, 281(2): 331-340.

[177] Tao J, Lu Y H, Chen J X, et al. Polarization-dependent surface-enhanced Raman scattering via aligned gold nanorods in poly (vinyl alcohol) film[J]. Plasmonics, 2011, 6(4): 785-789.

[178] Kang Z, Xu Y, Zhang L, et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers[J]. Applied Physics Letters, 2013, 103(4): 041105.

[179] Kang Z, Guo X Y, Jia Z X, et al. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser[J]. Optical Materials Express, 2013, 3(11): 1986-1991.

[180] Kang Z, Gao X J, Zhang L, et al. Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber[J]. Optical Materials Express, 2015, 5(4): 794-801.

[181] Koo J, Lee J, Shin W, et al. All-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber[J]. Optical Materials Express, 2015, 5(8): 1859-1867.

[182] Wang X , Luo Z C, Liu H, et al. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser[J]. Applied Physics Letters, 2014: 105(16): 161107.

[183] Zhang H, Hu Z L, Ma Z J. Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film[J]. ACS Applied Materials and Interface, 2016, 8(3): 2048-2053.

[184] 曹 伟, 宋雪梅, 王 波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007, 21(专辑Ⅷ): 77-82.

    Cao W, Song X M, Wang B, et al. Research progress in carbon nanotube[J]. Materials Reviews, 2007, 21(Special Ⅷ): 77-82.

[185] Yamashita S, Set S Y, Goh C S, et al. Ultrafast saturable absorbers based on carbon nanotubes and their applications to passively mode-locked fiber lasers[J]. Electronics and Communications in Japan, 2007, 90(2): 17-24.

[186] Tausenev A V, Obraztsova E D, Lobach A S, et al. 177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes[J]. Applied Physics Letters, 2008, 92(17): 171113.

[187] Mou C B, Rozhin A G, Arif R, et al. Polarization insensitive in-fiber mode-locker based on carbon nanotube with N-methyl-2-pryrrolidone solvent filled fiber microchamber[J]. Applied Physics Letters, 2012, 100(10): 101110.

[188] Bindra K S, Oak S M, Rustagi K C. Degenerate four-wave mixing in semiconductor-doped glasses below the absorption edge[J]. Phys Rev B, 1999, 59(4): 2968-2974.

[189] Prasanth R, Haverkort J E M, Deepthy A, et al. All-optical switching due to state filling in quantum dots[J]. Applied Physics Letters, 2004, 84(20): 4059-4061.

[190] Arnold C, Loo V, Lemaitre A, et al. Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000[J]. Applied Physics Letters, 2012: 100(11): 111111.

[191] Xing G C, Ji W, Zheng Y G, et al. Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy[J]. Applied Physics Letters, 2008, 93(24): 241114.

[192] Papagiannouli I, Maratou E, Koutselas I, et al. Synthesis and characterization of the nonlinear optical properties of novel hybrid organic-inorganic semiconductor lead iodide quantum wells and dots[J]. The Journal of Physical Chemisty C, 2014, 118(5): 2766-2775.

[193] 杜 凯, 张金花, 王 峰, 等. Ⅱ-Ⅵ族量子点的制备和非线性性质研究进展[J].材料导报, 2013, 27(17): 38-42.

    Du K, Zhang J H, Wang F, et al. Progress in preparation and nonlinear optical properties of Ⅱ-Ⅵ semiconductor quantum dots[J]. Materials Review, 2013, 27(17): 38-42.

[194] Guo Q B, Ji M X, Yao Y H, et al. Cu-Sn-S plasmonic semiconductor nanocrystals for ultrafast photonics[J]. Nanoscale, 2016, 8(43): 18277-18281.

[195] Guo Q B, Yao Y H, Luo Z C, et al. Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals[J]. ACS Nano, 2016, 10(10): 9463-9469.

马志军, 魏荣妃, 胡忠亮, 邱建荣. 2D材料和准2D材料的非线性光学特性及应用[J]. 中国激光, 2017, 44(7): 0703002. Ma Zhijun, Wei Rongfei, Hu Zhongliang, Qiu Jianrong. 2D Materials and Quasi-2D Materials: Nonlinear Optical Properties and Corresponding Applications[J]. Chinese Journal of Lasers, 2017, 44(7): 0703002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!