中国激光, 2017, 44 (7): 0703002, 网络出版: 2017-07-05   

2D材料和准2D材料的非线性光学特性及应用 下载: 2047次

2D Materials and Quasi-2D Materials: Nonlinear Optical Properties and Corresponding Applications
马志军 1,2,*魏荣妃 1,2胡忠亮 1,2邱建荣 1,2,3
作者单位
1 华南理工大学发光材料与器件国家重点实验室, 广东 广州 510640
2 光纤激光材料和应用广东省重点实验室, 广东 广州 510640
3 浙江大学光电系, 浙江 杭州 310027
摘要
二维(2D)材料具有独特的结构和光电特性, 在能源、环境、高性能光电传感等方面都有非常重要的应用。2D材料的非线性光学特性及应用是研究者广泛关注的热点研究领域。从2D材料的制备方法、晶体和能带结构、非线性光学特性研究等方面对2D材料的研究进行了简单回顾。非线性纳米晶自组装或复合薄膜是另一类重要的非线性材料。考虑到这类材料的宏观2D特性和论述内容的连贯性, 将非线性纳米晶自组装或复合薄膜归于准2D材料, 并对其非线性光学特性和应用等也进行了简单介绍, 作为对非线性光学材料研究的补充。
Abstract
Two-dimensional (2D) materials possess unique structures and optical/electric properties, thus have important applications in the fields of energy, environment, and high-performance optoelectronic sensing, etc. The research on nonlinear optical properties of 2D materials has drawn extensive interest globally. Here, we simply reviews the researches on 2D materials from the aspects of their preparation methods, crystalline/energy band structure, and nonlinear optical properties, etc. The self-assembled or composite films of optical nonlinear nanocrystals are another kind of important optical nonlinear materials. Considering their macroscopic two-dimensional nature, and to make this review more comprehensive, here we categorize this kind of material to quasi-2D material, and make a brief introduction to the researches mainly on their nonlinear optical properties and corresponding applications, as a complimentary review on the research of nonlinear optical materials.
参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

[3] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

[4] Meric I, Han M Y, Young A F, et al. Current saturation in zero-bandgap, topgated graphene field-effect transistors[J]. Nature Nanotechnolgy, 2008, 3(11): 654-659.

[5] Freitag M, Low T, Xia F N, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 2013, 7(1): 53-59.

[6] Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10): 630-634.

[7] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758.

[8] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[9] Tian H, Chin M L, Najmaei S, et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides[J]. Nano Research, 2016, 9(6): 1543-1560.

[10] Pospischil A, Mueller T. Optoelectronic devices based on atomically thin transition metal dichalcogenides[J]. Applied Science, 2016, 6(3): 78.

[11] Liu J X, Cao H, Jiang B, et al. Newborn 2D materials for flexible energy conversion and storage[J]. Science China Materials, 2016, 59(6): 459-474.

[12] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226.

[13] Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nature Nanotechnology, 2014, 9(2): 111-115.

[14] Peng B, Ang P K, Loh K P. Two-dimensional dichalcogenides for light-harvesting applications[J]. Nano Today, 2015, 10(2): 128-137.

[15] Cao T, Wang G, Han W P, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communication, 2012, 3: 887.

[16] Wang H T, Yuan H T, Hong S S, et al. Physical and chemical tuning of two-dimensional transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9): 2664-2680.

[17] Asahina H, Morita A. Band-structure and optical-properties of black phosphorus[J]. Journal of Physics C: Solid State Physics, 1984, 17(11): 1839-1852.

[18] Low T,Rodin A S, Carvalho A, et al. Tunable optical properties of multilayer black phosphorus thin films[J]. Physysical Review B, 2014, 90(7): 075434.

[19] Liang L B, Wang J, Lin W Z, et al. Electronic bandgap and edge reconstruction in phosphorene materials[J]. Nano Letters, 2014, 14(11): 6400-6406.

[20] Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communication, 2014, 5: 4475.

[21] Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6): 3347-3352.

[22] Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nature Photonics, 2015, 9(4): 247-252.

[23] Yuan H T, Liu X G, Afshinmanesh F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 2015, 10(8): 707-713.

[24] Rodin A S, Carvalho A, Castro Neto A H. Strain-induced gap modification in black phosphorus[J]. Physical Review Letters, 2014, 112(17): 176801.

[25] Xia F N, Wang H, Jia Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communication, 2014, 5: 4458.

[26] Hui F, Pan C B, Shi Y Y, et al. On the use of two dimensional hexagonal boron nitride as dielectric[J]. Microelectronic Engineering, 2016, 163: 119-133.

[27] Wang L F, Wu B, Chen J S, et al. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors[J]. Advanced Materials, 2014, 26(10): 1559-1564.

[28] Song L, Ci L J, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Letters, 2010, 10(8): 3209-3215.

[29] Appelbaum I, Drew H D, Fuhrer M S. Proposal for a topological plasmon spin rectifier[J]. Applied Physics Letters, 2011, 98(2): 023103.

[30] Wunderlich J, Park B G, Irvine A C, et al. Spin hall effect transistor[J]. Science, 2010, 330(6012): 1801-1804.

[31] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.

[32] Li P X, Zhang G J, Zhang H, et al. Q-switched mode-locked Nd∶YVO4 laser by topological insulator Bi2Te3 saturable absorber[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1912-1915.

[33] Sotor J, Sobon G, Macherzynski W, et al. Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber[J]. Laser Physics Letters, 2014, 11(5): 055102.

[34] Wong S L, Liu H F, Chi D Z. Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(3): 9-28.

[35] Yan K, Fu L, Peng H L, et al. Designed CVD growth of graphene via process engineering[J]. Accounts of Chemical Research, 2013, 46(10): 2263-2274.

[36] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1420.

[37] Han J H, Lee S, Cheon J. Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals[J]. Chemical Society Reviews, 2013, 42(7): 2581-2591.

[38] Li H, Lu G, Wang Y L, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small, 2013, 9(11): 1974-1981.

[39] Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001.

[40] Hong S S, Kundhikanjana W, Cha J J, et al. Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy[J]. Nano Letters, 2010, 10(8): 3118-3122.

[41] Li L H, Chen Y, Behan G, et al. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling[J]. Journal of Materials Chemistry, 2011, 21(32): 11862-11866.

[42] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.

[43] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568.

[44] Hughes J M, Aherne D, Coleman J N. Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions[J]. Journal of Applied Polymer Science, 2013, 127(6): 4483-4491.

[45] Hernandez Y, Lotya M, Rickard D, et al. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J]. Langmuir, 2010, 26(5): 3208-3213.

[46] O′Neill A, Khan U, Nirmalraj P N, et al. Graphene dispersion and exfoliation in low boiling point solvents[J]. The Journal of Physical Chemisty C, 2011, 115(13): 5422-5428.

[47] Bourlinos A B, Georgakilas V, Zboril R, et al. Liquid-phase exfoliation of graphite towards solubilized graphenes[J]. Small, 2009, 5(16): 1841-1845.

[48] Khan U, O′Neill A, Lotya M, et al. High-concentration solvent exfoliation of graphene[J]. Small, 2010, 6(7): 864-871.

[49] Magda G Z, Peto J, Dobrik G, et al. Exfoliation of large-area transition metal chalcogenide single layers[J]. Scientific Reports, 2015, 5: 14714.

[50] Zheng J, Zhang H, Dong S H, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nature Communication, 2014, 5: 2995.

[51] Cunningham G, Lotya M, Cucinotta C S, et al. Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds[J]. ACS Nano, 2012, 6(4): 3468-3480.

[52] Smith R J, King P J, Lotya M, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Advanced Materials, 2011, 23(34): 3944-3948.

[53] Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communication, 2015, 6: 8563.

[54] Brent J R, Savjani N, Lewis E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014, 50(87): 13338-13341.

[55] Kang J, Wood J D, Wells S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus[J]. ACS Nano, 2015, 9(4): 3596-3604.

[56] Ren Long, Liu Yundan, Hao Guolin. Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route[J]. Journal of Materials Chemistry, 2012, 22(11): 4921-4926.

[57] Warner J H, Rummeli M H, Bachmatiuk A, et al. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation[J]. ACS Nano, 2010, 4(3): 1299-1304.

[58] Li X L, Hao X P, Zhao M W, et al. Exfoliation of hexagonal boron nitride by molten hydroxides[J]. Advanced Materials, 2013, 25(15): 2200-2204.

[59] Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 277-283.

[60] Jang J T, Jeong S, Seo J W, et al. Ultrathin zirconium disulfide nanodiscs[J]. Journal of the American Chemical Society, 2011, 133(20): 7636-7639.

[61] Seo J W, Jun Y W, Park S W, et al. Two-dimensional nanosheet crystals[J]. Angewandte Chemie International Edition, 2007, 46(46): 8828-8831.

[62] Gao M R, Cao X, Gao Q, et al. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation[J]. ACS Nano, 2014, 8(4): 3970-3978.

[63] Altavilla C, Sarno M, Ciambelli P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo,W)[J]. Chemistry of Materials, 2011, 23(17): 3879-3885.

[64] Jeong S, Yoo D, Jang J T, et al. Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols[J]. Journal of the American Chemical Society, 2012, 134(44): 18233-18236.

[65] Yoo D, Kim M, Jeong S, et al. Chemical synthetic strategy for single-layer transition-metal chalcogenides[J]. Journal of the American Chemical Society, 2014, 136(42): 14670-14673.

[66] Obraztsov A N. Chemical vapour deposition making graphene on a large scale[J]. Nature Nanotechnology, 2009, 4(4): 212-213.

[67] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.

[68] Niu T C, Zhou M, Zhang J L, et al. Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene[J]. Journal of the American Chemical Society, 2013, 135(22): 8409-8414.

[69] Tang S J, Wang H M, Wang H S, et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride[J]. Nature Communication, 2015, 6: 6499.

[70] Shi Y M, Hamsen C, Jia X T, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition[J]. Nano Letters, 2010, 10(10): 4134-4139.

[71] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578.

[72] Yu Q K, Jauregui L A, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 443-449.

[73] Liang T, He G, Huang G, et al. Graphene nucleation preferentially at oxygen-rich Cu sites rather than on pure Cu surface[J]. Advanced Materials, 2015, 27: 6404-6410.

[74] Hao Y, Wang L, Liu Y, et al. Oxygen-activated growth and bandgap tenability of large single-crystal bilayer graphene[J]. Nature Nanotechnology, 2016, 11: 426-431.

[75] Liang T, Luan C, Chen H, et al. Exploring oxygen in graphene chemical vapor deposition synthesis[J]. Nanoscale, 2017, 9(11): 3719-3735.

[76] Zhang Y, Zhang Y F, Ji Q Q, et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary[J]. ACS Nano, 2013, 7(10): 8963-8971.

[77] Shi Y M, Zhou W, Lu A Y, et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates[J]. Nano Letters, 2012, 12(6): 2784-2791.

[78] Cong C X, Shang J Z, Wu X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition[J]. Advanced Optical Materials, 2014, 2(2): 131-136.

[79] Piper W W, Polich S J. Vapor-phase growth of single crystals of II-VI compounds[J]. Journal of Applied Physics, 1961, 32(7): 1278-1279.

[80] Li H, Cao J, Zheng W S, et al. Controlled synthesis of topological insulator nanoplate arrays on mica[J]. Journal of the American Chemical Society, 2012, 134(14): 6132-6135.

[81] Sun Z H, Chang H X. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology[J]. ACS Nano, 2014, 8(5): 4133-4156.

[82] Kong D S, Dang W H, Cha J J, et al. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential[J]. Nano Letters, 2010, 10(6): 2245-2250.

[83] Kim K K, Hsu A, Jia X T, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J]. Nano Letters, 2012, 12(1): 161-166.

[84] Sutter P, Lahiri J, Albrecht P, et al. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films[J]. ACS Nano, 2011, 5(9): 7303-7309.

[85] Lee K H, Shin H J, Lee J, et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics[J]. Nano Letters, 2012, 12(2): 714-718.

[86] Ohuchi F S, Parkinson B A, Ueno K, et al. Vanderwaals epitaxial-growth and characterization of MoSe2 thin-films on SnS2[J]. Journal of Applied Physics, 1990, 68(5): 2168-2175.

[87] Ueno K, Saiki K, Shimada T, et al. Epitaxial-growth of transition-metal dichalcogenides on cleaved faces of mica[J]. Journal of Vacuum Science and Technology A: Vacuum, Surface, and Films, 1990, 8(1): 68-72.

[88] Lin Y C, Chang C Y S, Ghosh R K, et al. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene[J]. Nano Letters, 2014, 14(12): 6936-6941.

[89] Yang W, Chen G R, Shi Z W, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nature Materials, 2013, 12(9): 792-797.

[90] Yan A M, Velasco J, Kahn S, et al. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles[J]. Nano Letters, 2015, 15(10): 6324-6331.

[91] Azizi A, Eichfeld S, Geschwind G, et al. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides[J]. ACS Nano, 2015, 9(5): 4882-4890.

[92] Liu X L, Balla I, Bergeron H, et al. Rotationally commensurate growth of MoS2 on epitaxial graphene[J]. ACS Nano, 2016, 10(1): 1067-1075.

[93] Listed N. The rise and rise of graphene[J]. Nature Nanotechnology, 2010, 5(11): 755.

[94] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.

[95] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum hall effect and Berry′s phase in graphene[J]. Nature, 2005, 438(7065): 201-204.

[96] Rangel N L, Seminario J M. Vibronics and plasmonics based graphene sensors[J]. The Journal of Chemical Physics, 2010, 132(12): 03B611.

[97] Banerjee S K, Register L F, Tutuc E, et al. Graphene for CMOS and beyond CMOS applications[J]. Proceedings of the IEEE, 2010, 98(12): 2032-2046.

[98] Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010, 5(7): 487-496.

[99] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

[100] 覃信茂, 谢卓成, 谢 泉. 石墨烯改性研究进展[J]. 电子元件与材料, 2014, 33(3): 1-4.

    Qin Xinmao, Xie Zhuocheng, Xie Quan. Research progress on the modification of graphene[J]. Electronic Components and Materials, 2014, 33(3): 1-4.

[101] Zhang H J, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.

[102] Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798.

[103] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2012, 12(1): 526-526.

[104] Liu L T, Kumar S B, Ouyang Y, et al. Performance limits of monolayer transition metal dichalcogenide transistors[J]. IEEE Transactions on Electron Devices, 2011, 58(9): 3042-3047.

[105] Chang K, Chen W. L-cysteine-assisted synthesis of layered MoS2/grapheme composites with excellent electrochemical performance for lithium ion batteriesl[J]. ACS Nano, 2011, 5(6): 4720-4728.

[106] Xie J F, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40): 5807-5813.

[107] Koenig S P, Doganov R A, Schmidt H, et al. Electric field effect in ultrathin black phosphorus[J]. Applied Physics Letters, 2014, 104(10): 103106.

[108] Liu H, Du Y C, Deng Y X, et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743.

[109] 周炳琨, 陈倜嵘. 激光原理[M]. 北京: 国防工业出版社, 2000: 256-340.

[110] Wang J, Hernandez Y, Lotya M, et al. Broadband nonlinear optical response of graphene dispersions[J]. Advanced Materials, 2009, 21(23): 2430-2435.

[111] Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

[112] Yu H H, Chen X F, Zhang H J, et al. Large energy pulse generation modulated by graphene bpitaxially grown on silicon carbide[J]. ACS Nano, 2010, 4(12): 7582-7586.

[113] Zhang H, Tang D Y, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 2010, 96(11): 111112.

[114] Ma J, Xie G Q, Lv P, et al. Graphene mode-locked femtosecond laser at 2 μm wavelength[J]. Optics Letters, 2012, 37(11): 2085-2087.

[115] Obraztsova E D, Tausenev A V. Graphene for laser applications[EB/OL].[2017-02-13]. https://www.researchgate.net/publication/267783284_Graphene_for_laser_applications.

[116] Zheng Z W, Zhao C J, Lu S B, et al. Microwave and optical saturable absorption in graphene[J]. Optics Express, 2012, 20(21): 23201-23214.

[117] Hendry E, Hale P J, Moger J, et al. Coherent nonlinear optical response of graphene[J]. Physical Review Letters, 2010, 105(9): 097401.

[118] Krishna M B M, Kumar V P, Venkatramaiah N, et al. Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials[J]. Applied Physics Letters, 2011, 98(8): 081106.

[119] Chen W, Wang G, Qin S Q, et al. The nonlinear optical properties of coupling and decoupling graphene layers[J]. AIP Advances, 2013, 3(4): 042123.

[120] Zhang Y, Liu, T, Meng B,et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Natcommun, 2013, 4: 1811-1821.

[121] Li X, Wu K, Sun Z, et al. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers[J]. Scientific Reports, 2016, 6: 25266-25274.

[122] Li X, Yu X, Sun Z, et al. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction[J]. Scientific Reports, 2015, 5: 16624-16631.

[123] Li X, Tang Y, Yan Z, et al. Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1101107.

[124] Bernard F Z H, Gorza S P. Towards mode-locked fiber laser using topological insulators[C]. Optical Society of America, 2012: NIh 1A.5.

[125] Zhao C J, Zou Y H, Chen Y. Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker[J]. Optics Express, 2012, 20(25): 27888-27895.

[126] Zhao C J, Zhang H, Qi X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101: 211106.

[127] Lu S B, Zhao C J, Zou Y H, et al. Third order nonlinear optical property of Bi2Se3[J]. Optics Express, 2013, 21(2): 2072-2082.

[128] Tang P H, Zhang X Q, Zhao C J, et al. Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er∶YAG ceramiclaser[J]. IEEE Photonics Journal, 2013, 5(2): 1500707.

[129] Luo Z Q, Liu C, Huang Y Z, et al. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1-8.

[130] Jung M, Lee J, Koo J, et al. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator[J]. Optics Express, 2014, 22(7): 7865-7874.

[131] He X, Zhang H, Lin W, et al. PVP-assisted solvothermal synthesis of high-yielded Bi2Te3 hexagonal nanoplates: application in passively Q-switched fiber laser[J]. Scientific Reports, 2015, 5: 15868.

[132] Zhang H, He X, Lin W, et al. Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets[J]. Optics Express, 2015, 23(10): 13376-13383.

[133] Wang K P, Wang J, Fan J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 Nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267.

[134] Zhang X Y, Zhang, S, F, Chang C X, et al. Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance[J]. Nanoscale, 2015, 7(7): 2978-2986.

[135] Wang K P, Feng Y Y, Chang C X, et al. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors[J]. Nanoscale, 2014, 6(18): 10530-10535.

[136] Duan S S, Yang K, Wang Z H, et al. Fabrication of highly stretchable conductors based on 3D printed porous poly (dimethylsiloxane) and conductive carbon nanotubes/graphene Network[J]. ACS Applied Materials and Interfaces, 2016, 8(3): 2187-2192.

[137] Zhang H, Lu S B, Zheng J, et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.

[138] Zhou K G, Zhao M, Chang M J, et al. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets[J]. Small, 2015, 11(6): 694-701.

[139] Ouyang Q Y, Yu H L, Zhang K, et al. Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films[J]. Journal of Materials Chemistry C, 2014, 2(31): 6319-6325.

[140] Mao D, Wang Y D, Ma C J, et al. WS2 mode-locked ultrafast fiber laser[J]. Scientific Reports, 2015, 5: 7965.

[141] Wei R F, Zhang H, Hu Z L, et al. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets[J]. Nanotechnology, 2016, 27(30): 305203.

[142] Wei R F, Zhang H, Tian X L, et al. MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser[J]. Nanoscale, 2016, 8(14): 7704-7710.

[143] Wei R F, Zhang H, He X, et al. Versatile preparation of ultrathin MoS2 nanosheets with reverse saturable absorption response[J]. Optics Materials Express, 2015, 5(8): 1807-1814.

[144] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194.

[145] Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

[146] Xu Y H, Wang Z T, Guo Z N, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.

[147] Sotor J, Sobon G, Kowalczyk M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 3885-3888.

[148] Zhang B T, Lou F, Zhao R W, et al. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser[J]. Optics Letters, 2015, 40(16): 3691-3694.

[149] Qin Z P, Xie G Q, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718.

[150] Yu H, Zheng X, Yin K, et al. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets[J]. Optical Materials Express, 2016, 6(2): 603-609.

[151] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413.

[152] Tan D Z, Yamada Y, Zhou S F, et al. Carbon nanodots with strong nonlinear optical response[J]. Carbon, 2014, 69: 638-640.

[153] Gieseking R L, Mukhopadhyay S, Risko C, et al. Impact of the nature of the excited-state transition dipole moments on the third-order nonlinear optical response of polymethine dyes for all-optical switching applications[J]. ACS Photonics, 2014, 1(3): 261-269.

[154] Maier S A. Plasmonics: fundamental and applications[M]. Berlin: Springer Science and Business Media, 2007.

[155] 李志远, 李家方. 金属纳米结构表面等离子体共振的调控和利用[J]. 科学通报, 2011, 56(32): 2631-2661.

    Li Z Y, Li J F. Recent progress in engineering and application of surface plasmon resonance in metal nanostructures[J]. Chinese Science Bull, 2011, 56: 2631-2661.

[156] Ricard D, Roussignol P, Flytzanis C. Surface-mediated enhancement of optical-phase conjugation in metal colloids[J]. Optics Letters, 1985, 10(10): 511-513.

[157] Tanahashi I, Manabe Y, Tohda T, et al. Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method[J]. Journal of Applied Physics, 1996, 79(3): 1244-1249.

[158] Liao H B, Xiao R F, Wang H, et al. Large third-order optical nonlinearity in Au∶TiO2 composite films measured on a femtosecond time scale[J]. Applied Physics Letters, 1998, 72(15): 1817-1819.

[159] Ballesteros J M, Serna R, Solis J, et al. Pulsed laser deposition of Cu∶Al2O3 nanocrystal thin films with high third-order optical susceptibility[J]. Applied Physics Letters, 1997, 71(17): 2445-2447.

[160] Karthikeyan B, Anija M, Philip R. In situ synthesis and nonlinear optical properties of Au∶Ag nanocomposite polymer films[J]. Applied Physics Letters, 2006, 88(5): 053104.

[161] Porel S, Singh S, Harsha S S, et al. Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting[J]. Chemistry of Materials, 2005, 17(1): 9-12.

[162] 杨光陈, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性[J]. 物理学报, 2007, 56(2): 1182-1187.

    Yang G C, Chen Z H. Large optical nonliearities in Ag-doped BaTiO3 nanocomposite films[J]. Acta Physical Sinica, 2007, 56(2): 1182-1187.

[163] Wang K, Long H, Fu M, et al. Size-related third-order optical nonlinearities of Au nanoparticle arrays[J]. Optics Express, 2010, 18(13): 13874-13879.

[164] Fan D F, Mou C B, Bai X K, et al. Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber[J]. Optics Express, 2014, 22(15): 18537-18542.

[165] Jiang T, Xu Y, Tian Q J, et al. Passively Q-switching induced by gold nanocrystals[J]. Applied Physics Letters, 2012, 101(15): 151122.

[166] Slocik J M, Stone M O, Naik R R. Synthesis of gold nanoparticles using multifunctional peptides[J]. Small, 2005, 1(11): 1048-1052.

[167] 严 亚, 李津如, 杨 云. 单分散球状纳米金颗粒的合成[J]. 化学进展, 2009, 21(5): 971-981.

    Yan Ya, Li Jinru, Yang Yun. Synthesis of spherical monodisperse gold nanoparticles[J]. Progress in Chemistry, 2009, 21(5): 971-981.

[168] Brioude A, Jiang X C, Pileni M P. Optical properties of gold nanorods: DDA simulations supported by experiments[J]. The Journal of Physical Chemistry B, 2005, 109(27): 13138-13142.

[169] Wu H Y, Huang W L, Huang M H. Direct high-yield synthesis of high aspect ratio gold nanorods[J]. Crystal Growth and Design, 2007, 7(4): 831-835.

[170] De Boni L, Wood E L, Toro C, et al. Optical saturable absorption in gold nanoparticles[J]. Plasmonics, 2008, 3(4): 171-176.

[171] Li J F, Liu S Y, Liu Y, et al. Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods[J]. Applied Physics Letters, 2010, 96(26): 263103.

[172] Olesiak-Banska J, Gordel M, Kolkowski R, et al. Third-order nonlinear optical properties of colloidal gold nanorods[J]. The Journal of Physical Chemisty C, 2012, 116(25): 13731-13737.

[173] 焦 洋, 孙晓泉, 王志荣, 等. 贵金属纳米粒子及其复合物的非线性光学性能和应用研究进展[J]. 材料导报, 2006, 20(Z1): 188-192.

    Jiao Y, Sun X Q, Wang Z R, et al. Nonlinear optical properties and applications of noble metal nanoparticles and nanocomposites[J]. Materials Reviews, 2006, 20(Z1): 188-192.

[174] Elim H I, Yang J, Lee J Y, et al. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods[J]. Applied Physics Letters, 2006, 88(8): 083107.

[175] Wang K, Long H, Fu M, et al. Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array[J]. Optics Letters, 2010, 35(10): 1560-1562.

[176] Lamarre J M, Billard F, Kerboua C H, et al. Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix[J]. Optics Communications, 2008, 281(2): 331-340.

[177] Tao J, Lu Y H, Chen J X, et al. Polarization-dependent surface-enhanced Raman scattering via aligned gold nanorods in poly (vinyl alcohol) film[J]. Plasmonics, 2011, 6(4): 785-789.

[178] Kang Z, Xu Y, Zhang L, et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers[J]. Applied Physics Letters, 2013, 103(4): 041105.

[179] Kang Z, Guo X Y, Jia Z X, et al. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser[J]. Optical Materials Express, 2013, 3(11): 1986-1991.

[180] Kang Z, Gao X J, Zhang L, et al. Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber[J]. Optical Materials Express, 2015, 5(4): 794-801.

[181] Koo J, Lee J, Shin W, et al. All-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber[J]. Optical Materials Express, 2015, 5(8): 1859-1867.

[182] Wang X , Luo Z C, Liu H, et al. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser[J]. Applied Physics Letters, 2014: 105(16): 161107.

[183] Zhang H, Hu Z L, Ma Z J. Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film[J]. ACS Applied Materials and Interface, 2016, 8(3): 2048-2053.

[184] 曹 伟, 宋雪梅, 王 波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007, 21(专辑Ⅷ): 77-82.

    Cao W, Song X M, Wang B, et al. Research progress in carbon nanotube[J]. Materials Reviews, 2007, 21(Special Ⅷ): 77-82.

[185] Yamashita S, Set S Y, Goh C S, et al. Ultrafast saturable absorbers based on carbon nanotubes and their applications to passively mode-locked fiber lasers[J]. Electronics and Communications in Japan, 2007, 90(2): 17-24.

[186] Tausenev A V, Obraztsova E D, Lobach A S, et al. 177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes[J]. Applied Physics Letters, 2008, 92(17): 171113.

[187] Mou C B, Rozhin A G, Arif R, et al. Polarization insensitive in-fiber mode-locker based on carbon nanotube with N-methyl-2-pryrrolidone solvent filled fiber microchamber[J]. Applied Physics Letters, 2012, 100(10): 101110.

[188] Bindra K S, Oak S M, Rustagi K C. Degenerate four-wave mixing in semiconductor-doped glasses below the absorption edge[J]. Phys Rev B, 1999, 59(4): 2968-2974.

[189] Prasanth R, Haverkort J E M, Deepthy A, et al. All-optical switching due to state filling in quantum dots[J]. Applied Physics Letters, 2004, 84(20): 4059-4061.

[190] Arnold C, Loo V, Lemaitre A, et al. Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000[J]. Applied Physics Letters, 2012: 100(11): 111111.

[191] Xing G C, Ji W, Zheng Y G, et al. Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy[J]. Applied Physics Letters, 2008, 93(24): 241114.

[192] Papagiannouli I, Maratou E, Koutselas I, et al. Synthesis and characterization of the nonlinear optical properties of novel hybrid organic-inorganic semiconductor lead iodide quantum wells and dots[J]. The Journal of Physical Chemisty C, 2014, 118(5): 2766-2775.

[193] 杜 凯, 张金花, 王 峰, 等. Ⅱ-Ⅵ族量子点的制备和非线性性质研究进展[J].材料导报, 2013, 27(17): 38-42.

    Du K, Zhang J H, Wang F, et al. Progress in preparation and nonlinear optical properties of Ⅱ-Ⅵ semiconductor quantum dots[J]. Materials Review, 2013, 27(17): 38-42.

[194] Guo Q B, Ji M X, Yao Y H, et al. Cu-Sn-S plasmonic semiconductor nanocrystals for ultrafast photonics[J]. Nanoscale, 2016, 8(43): 18277-18281.

[195] Guo Q B, Yao Y H, Luo Z C, et al. Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals[J]. ACS Nano, 2016, 10(10): 9463-9469.

马志军, 魏荣妃, 胡忠亮, 邱建荣. 2D材料和准2D材料的非线性光学特性及应用[J]. 中国激光, 2017, 44(7): 0703002. Ma Zhijun, Wei Rongfei, Hu Zhongliang, Qiu Jianrong. 2D Materials and Quasi-2D Materials: Nonlinear Optical Properties and Corresponding Applications[J]. Chinese Journal of Lasers, 2017, 44(7): 0703002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!