Chinese Optics Letters, 2018, 16 (5): 050004, Published Online: Jul. 4, 2018  

Mid-infrared superabsorbers based on quasi-periodic moiré metasurfaces Download: 643次

Author Affiliations
Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
Figures & Tables

Fig. 1. (a) Fabrication procedure of MIM moiré superabsorbers with variable parameters (i.e., spacer thickness d, rotation angle θ, and filling factor). (b)-(d) Moiré metasurfaces with variable rotation angles of 10°, 15°, and 20°, respectively. (e) 20° moiré metasurface with a higher filling factor than that in (d). (f), (g) Scanning electron micrographs of Au moiré metasurfaces. The scale bar is 2 μm.

下载图片 查看原文

Fig. 2. (a) Unit vectors in the hexagonal hole array. (b) A rectangular area in the hexagonal hole array using V(5,8) and V(1,6) as the length and width separately. (c) The same area as (b) but with a relative 15° rotation angle. (d) A unit cell in the moiré pattern with a relative 15° rotation angle. (e) A unit cell for 10°, 15°, and 20° moiré metasurfaces.

下载图片 查看原文

Fig. 3. (a) Cross-sectional view of r12, r21, t12, and t21 in decoupled mode theory. (b) The simulation model to calculate the parameters r12, r21, t12, and t21. (c) The simulated reflection/transmission phase and amplitude coefficients for a 15° rotation angle moiré metasurface.

下载图片 查看原文

Fig. 4. (a) Simulated (black dashed line) absorption for a 15° rotation angle pristine (no spacer) moiré metasurface; simulated (dashed red and blue line) and calculated (solid black line) results comparison for a 15° rotation angle moiré MIM structure with 800 nm spacer thickness. The PML boundary is applied in the simulation. (b) Simulated (dashed line) and calculated (solid line) results comparison for different rotation angles at 800 nm spacer thickness. The periodic boundary is applied in the simulation.

下载图片 查看原文

Fig. 5. (a) Calculated narrowband absorber with an optimized spacer thickness (1300 nm) at different rotation angles. (b) A calculated broadband absorber with an optimized spacer thickness (900 nm spacer for 10°, 800 nm spacer for 15°, and 700 nm spacer for 20°).

下载图片 查看原文

Fig. 6. (a) Simulated polarization-dependent broadband absorption for a 20° moiré MIM structure with an optimized spacer thickness. (b) Simulated polarization-dependent narrowband absorption for a 20° moiré MIM structure with an optimized spacer thickness.

下载图片 查看原文

Fig. 7. Simulated visible-NIR absorption spectra of a 10° moiré MIM structure with different spacer thicknesses.

下载图片 查看原文

Table1. m, m′, n, and n′ Values for Different Tolerance Factors as θ Equals 15°

Rotation AngleTolerancemmnn
15°δ=0.11115
15°δ=0.015186
15°δ=0.00117112767

查看原文

Table2. m, m′, n, and n′ Values Used in Simulation for Different Rotation Angles

Rotation AngleTolerancemmnn
10°δ=0.0132419
15°δ=0.015186
20°δ=0.0162119

查看原文

Yaoran Liu, Zilong Wu, Eric H. Hill, Yuebing Zheng. Mid-infrared superabsorbers based on quasi-periodic moiré metasurfaces[J]. Chinese Optics Letters, 2018, 16(5): 050004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!