光子学报, 2012, 41 (5): 516, 网络出版: 2012-05-18   

Ge20Sb15Se65硫系玻璃光子晶体光纤的中红外色散特性

Dispersion Properties of Ge20Sb15Se65 Chalcogenide Glass Photonic Crystal Fiber for MidIR Region
刘永兴 1,2,3,*张培晴 1,2,3许银生 1,2,3戴世勋 1,2,3王训四 1,2,3徐铁峰 1,2,3聂秋华 1,2,3
作者单位
1 宁波大学 信息科学与工程学院
2 材料化学与工程学院
3 红外材料与器件实验室,浙江 宁波 315211
摘要
硫系玻璃与石英玻璃相比具有高折射率(2.0~3.5)、低声子能量 (<350 cm-1)、优良的中远红外透过性能(可至25 μm)等特性.本文制备了一种在中红外具有优良透过特性的无As环保型Ge20Sb15Se65硫系玻璃材料,以此为基质材料设计了一种三层空气孔结构光子晶体光纤,利用多极法对光纤的中红外色散特性进行了数值模拟,系统研究了结构参量孔径d、孔间距Λ 以及d/Λ 对其色散特性的影响.分析表明:通过改变包层空气孔直径d或空气孔间距Λ,可灵活的调节光子晶体光纤的零色散波长向短波或长波方向移动.通过优化结构参量发现,当Λ=3 μm,d/Λ=0.35 附近变化时,可获得3~5 μm色散平坦,且色散值小于5 ps·nm-1·km-1的光子晶体光纤.
Abstract
Compared with silica glass, chalcogenide glass possesses some unique advantages, such as high refractive index (2.0~3.5), low phonon energy (lower than 350 cm-1), and large infrared transmission window (up to 25 μm). In this paper, a kind of environmental protected Ge20Sb15Se65 chalcogenide glass was prepared, which showed good transmission in IR range. Based on this glass, a photonic crystal fiber with three rings air holes was designed. Multipole method was employed to study the dispersion properties of the designed photonic crystal fiber. The relationship between fiber structure parameters(the air diameter d, period Λ and the ratio d/Λ)and dispersion properties was presented. The simulation results showed that the zero dispersion point of photonic crystal fiber can be flexibility tuned to short or long wavelength region by control the fiber structure parameters. Finally, by optimizing the sturcure parameters, the dispersion flat photonic crystal fiber through of 3~5 μm was obtained, with the dispersion value less than 5 ps·nm-1·km-1.
参考文献

[1] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 24862489.

[2] YABLONOVITCH E. Inhibited spontaneous emission in solidstate physics and electronics[J]. Physical Review Letters, 1987, 58(20): 20592062.

[3] 郭夏锐, 杨德兴, 赵建林,等. 光子晶体光纤弯曲损耗特性研究[J]. 光子学报2007, 36(10): 18171820.

    GUO Xiarui, YANG Dexing, ZHAO Jianlin, et al. Experimental investigation on the bending loss properties of photonic crystal fibers[J]. Acta Photonica Sinica, 2007, 36(10): 18171820.

[4] KNIGHT J, BIRKS T, RUSSELL P S J, et al. Properties of photonic crystal fiber and the effective index model[J]. JOSA A, 1998, 15(3): 748752.

[5] 吴维庆, 陈雄文, 周辉, 等. 光子晶体光纤弯曲损耗特性研究[J]. 光子学报2006, 35(1): 109113.

    WU Weiqing, CHEN Xiongwei, ZHOU Hui, et al. Investigation of the ultraflattened dispersion in photonic crystal fibers with hybrid cores[J]. Acta Photonica Sinica, 2006, 35(1): 109113.

[6] 王伟, 侯蓝田. 光子晶体光纤的现状和发展[J]. 激光与光电子学进展, 2008, 45(2): 4348.

    WANG Wei, HOU Lantian. Present situation and future development in photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2008, 45(2): 4348.

[7] ANDRIESH A, IOVU M. Diffraction and luminescent structures based on chalcogenide glasses and polymers[J]. Physica Status Solidi (B) Basic Research, 2009, 246(8): 18621865.

[8] 来耀兵, 光子晶体光纤中飞秒激光脉冲传输研究[J]. 光子学报, 2008, 37(8): 15761579.

    LAI Yaobing. Numerical study on femtosecond laser pulse in photonic crystal fiber[J]. Acta Photonica Sinica, 2008, 37(8): 15761579.

[9] NIELSEN M, JACOBSEN C, MORTENSEN N, et al. Lowloss photonic crystal fibers for transmission systems and their dispersion properties[J]. Optics Express, 2004, 12(7): 13721376.

[10] 宋有建, 胡明列, 谢辰, 等. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器[J].物理学报, 2010, 59(10):71057110.

    SONG Youjian, HU Minglie, XIE Chen, et al. Approaching 100 nJ pulse energy output from a modelocked photonic crystal fiber laser[J]. Acta Physica Sinica, 2010, 59(10): 71057110.

[11] VARSHNEY S, FUJISAWA T, SAITOH K, et al. Novel design of inherently gainflattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in Cband[J]. Optics Express, 2005, 13(23): 95169526.

[12] 戴世勋, 於幸燕, 张巍, 等. 硫系玻璃光子晶体光纤研究进展[J]. 激光与光电子学进展,2011, 48(9):110.

    DAI Shixun, YU Xingyan, ZHANG Wei, et al. Research progress of chalcogenide glass photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2011, 48(9): 110.

[13] BRILLAND L, SMEKTALA F, RENVERSEZ G, et al. Fabrication of complex structures of holey fibers in chalcogenide glass[J]. Optics Express, 2006, 14(3): 12801285.

[14] WEIBLEN R J, DOCHERTY A, HU J, et al. Calculation of the expected bandwidth for a midinfrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers[J]. Optics Express, 2010, 18(26): 666674.

[15] 郭淑琴,刘印平,朱广信. 雪花形晶芯光子晶体光纤[J]. 光子学报2007, 36(7): 12071210.

    GUO Shuqin, LIU Yinping, ZHU Guangxin. Photonic crystal fiber with snowflake shape crystal core[J] . Acta Photonica Sinica, 2007, 36(7): 12071210.

[16] DABAS B. Zero dispersion demonstration for halcogenide glasses (As2Se3 and As2S3) photonic crystal fiber: Analysis and evolution[C]. 2009 Conference on Lasers and ElectroOptics and 2009 Conference on Quantum Electronics and Laser Science Conference, 2009, pp. 504507.

[17] DABAS B. Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber[J]. Optics Communications, 2010, 283(7): 13311337.

[18] 王晓琰, 李曙光, 刘硕, 等. 中红外高双折射高非线性宽带正常色散As2S3光子晶体光纤[J]. 物理学报, 2011,60(6): 367372.

    WANG Xiaoyan, LI Shuguang, LIU Shuo, et al. Midinfrared As2S3 chalcogenide glass broadband normal dispersion photonic crystal fiber with high birefringence and high nonlinearity[J]. Acta Physica Sinica, 2011, 60(6): 367372.

[19] 曹莹,聂秋华,徐铁峰,等. Ge28Sb6S(66x)Sex玻璃系统光学特性与结构[J]. 光子学报,2010, 37(7): 11531157.

    CAO Ying, NIE Qiuhua, XU Tiefeng, et al. Optical properties and structure of Ge28Sb6S(66x)Sex glasses[J]. Acta Photonica Sinica, 2010, 37(7): 11531157.

[20] 方亮,赵建林,甘雪涛,等. 双零色散光子晶体光纤中超连续谱的产生及控制[J]. 光子学报,2010, 39(11): 19211927.

    FANG Liang, ZHAO Jianlin, GAN Xuetao, et al. Generation and control of supercontinuum in photonic crystal fibers with twozero dispersion wavelengths[J] Acta Photonica Sinica, 2010, 39(11): 19211927.

[21] BUREAU B, MAURUGEON S, CHARPENTIER F, et al. Chalcogenide glass fibers for infrared sensing and space optics[J]. Fiber and Integrated Optics, 2009, 28(1): 6580.

[22] TATIAN B. Fitting refractiveindex data with the Sellmeier dispersion formula[J]. Applied Optics, 1984, 23(24): 44774485.

[23] MONRO T M, RICHARDSON D, BRODERICK N, et al. Holey optical fibers: An efficient modal model[J]. Journal of Adhesion Science and Technology, 1999, 17(6): 10931102.

[24] BRECHET F, MARCOU J, PAGNOUX D, et al. Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method[J]. Optical Fiber Technology, 2000, 6(2): 181191.

[25] KUHLMEY B T, WHITE T P, RENVERSEZ G, et al. Multipole method for microstructured optical fibers. II. Implementation and results[J]. JOSA B, 2002, 19(10): 23312340.

[26] WHITE T, KUHLMEY B, MCPHEDRAN R, et al. Multipole method for microstructured optical fibers. I. Formulation[J]. JOSA B, 2002, 19(10): 23222330.

[27] LE PERSON J, SMEKTALA F, CHARTIER T, et al. Light guidance in new chalcogenide holey fibres from GeGaSbS glass[J]. Materials Research Bulletin, 2006, 41(7): 13031309.

刘永兴, 张培晴, 许银生, 戴世勋, 王训四, 徐铁峰, 聂秋华. Ge20Sb15Se65硫系玻璃光子晶体光纤的中红外色散特性[J]. 光子学报, 2012, 41(5): 516. LIU Yongxing, ZHANG Peiqing, XU Yinsheng, DAI Shixun, WANG Xunsi, XU Tiefeng, Nie Qiuhua. Dispersion Properties of Ge20Sb15Se65 Chalcogenide Glass Photonic Crystal Fiber for MidIR Region[J]. ACTA PHOTONICA SINICA, 2012, 41(5): 516.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!