激光与光电子学进展, 2018, 55 (7): 070001, 网络出版: 2018-07-20   

有机光电倍增探测器研究进展 下载: 1949次封面文章

Research Progress in Organic Photomultiplication Photodetector
作者单位
太原理工大学物理与光电工程学院, 新型传感器与智能控制教育部重点实验室, 山西 太原 030024
摘要
外量子效率远远超过100%的有机光电倍增探测器近年来受到了研究者们的广泛关注。首先介绍有机光电倍增探测器的基本结构及其光电倍增机理。有机光电倍增探测器由于其活性层的材料特性不同,可分为小分子基及聚合物基两种类型。针对这两种不同类型的有机光电倍增探测器的研究进展进行综述,详细说明研究者们在改善有机光电倍增探测器量子效率、暗电流、响应速度、光谱性能等方面取得的重要进展。简单介绍了研究者们针对有机光电倍增探测器的工作机理提出的一些不同解释。总结全文并展望了有机光电倍增探测器的发展前景。
Abstract
In recent years, organic photomultiplication photodetectors with external quantum efficiency far exceeding 100% have drawn extensive research attention. This paper firstly presents the typical structures of organic photomultiplication photodetectors and their working mechanisms. Organic photomultiplication photodetectors can be divided into two types depending on the material properties of active layers. One is the small organic molecule photomultiplication photodetector and the other is the polymer photomultiplication photodetector. This paper reviews the progress of these two different types of organic photomultiplication photodetectors. Then, we introduce some important developments in optimizing quantum efficiency, dark current, response speed and spectral performance of organic photomultiplication photodetectors in detail. Later, we briefly show some different explanations proposed by researchers for explaining the working mechanism of organic photomultiplication photodetectors. Finally, we summarize the paper and provide the prospect of organic photomultiplication photodetectors.
参考文献

[1] 赵文锦. 光电倍增管的技术发展状态[J]. 光电子技术, 2011, 31(3): 145-148.

    Zhao W J. Developments in technology of photomultipliers[J].Optoelectronic Technology, 2011, 31(3): 145-148.

[2] Gong X, Tong M H, Xia Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667.

[3] 王燕, 张锐. 光电探测器特性在TDLAS气体检测中的影响[J]. 光学学报, 2016, 36(2): 0230002.

    Wang Y, Zhang R. Photodetector characteristics effect on TDLAS gas detection[J]. Acta Optica Sinica, 2016, 36(2): 0230002.

[4] 李冲, 张东亮, 薛春来, 等. 硅基IV族光电器件研究进展(二): 光电探测器[J]. 激光与光电子学进展, 2014, 51(11): 110002.

    Li C, Zhang D L, Xue C L, et al. Progress in the study of Si-based group IV optoelectronic devices (II): photodetectors[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110002.

[5] Büchele P, Richter M, Tedde S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors[J]. Nature Photonics, 2015, 9: 843-848.

[6] 颜佩琴, 孟文东, 王煜蓉, 等. 基于温漂自动补偿的高稳定性Si-APD单光子探测器[J]. 激光与光电子学进展, 2017, 54(8): 080403.

    Yan P Q, Meng W D, Wang Y R, et al. Si-APD single-photon detector with high stability based on auto-compensation of temperature drift[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080403.

[7] 杨花, 曹阳, 贺军辉, 等. 石墨烯红外光电探测器研究进展[J]. 激光与光电子学进展, 2015, 52(11): 110003.

    Yang H, Cao Y, He J H, et al. Research progress in graphene-based infrared photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110003.

[8] Dong H L, Zhu H F, Meng Q, et al. Organic photoresponse materials and devices[J]. Chemical Society Reviews, 2012, 41(5): 1754-1808.

[9] 刘君红, 刘俊勇, 管兴胤. 光电倍增管线性特性、时间特性参数调试[J]. 核电子学与探测技术, 2005, 25(6): 768-771.

    Liu J H, Liu J Y, Guan X Y. Measurement of linearity and time response parameters for photomultiplier tube[J].Nuclear Electronics & Detection Technology, 2005, 25(6): 768-771.

[10] Fang Z Y, Wang Y M, Liu Z, et al. Plasmon-induced doping of graphene[J]. ACS Nano, 2012, 6(11): 10222-10228.

[11] 武兴建, 吴金宏. 光电倍增管原理、特性与应用[J]. 电子设计工程, 2001(8): 13-17.

    Wu X J, Wu J H. Principle, characteristics and application of photoelectric magnification tube[J]. Electronic Design Engineering, 2001(8): 13-17.

[12] Ju Y R, Song J, Geng Z X, et al. A microfluidics cytometer for mice anemia detection[J]. Lab on a Chip, 2012, 12(21): 4355-4362.

[13] 李维, 王宇, 武腾飞. 黑硅红外探测器研究进展[J]. 激光与光电子学进展, 2016, 53(7): 070004.

    Li W, Wang Y, Wu T F. Progress in black silicon infrared detectors[J]. Laser & Optoelectronics Progress, 2016, 53(7): 070004.

[14] Pearsall T P, Temkin H, Bean J C, et al. Avalanche gain in GexSi1-x/Si infrared waveguide detectors[J]. IEEE Electron Device Letters, 1986, 7(5): 330-332.

[15] 雷肇棣. 光电探测器原理及应用[J]. 物理, 1994, 23(4): 220-226.

    Lei Z D. Principle and application of photoelectric detector[J]. Physics, 1994, 23(4): 220-226.

[16] Kang Y M, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J]. Nature Photonics, 2009, 3(1): 59-63.

[17] 尹丽菊, 陈钱, 张灿林. 雪崩光电二极管的光谱响应特性[J]. 激光与光电子学进展, 2010, 47(11): 111101.

    Yin L J, Chen Q, Zhang C L. Spectral response characterization of avalanche photodiode[J]. Laser & Optoelectronics Progress, 2010, 47(11): 111101.

[18] Renker D. Geiger-mode avalanche photodiodes, history, properties and problems[J]. Nuclear Instruments & Methods in Physics Research A, 2006, 567(1): 48-56.

[19] 刘福浩, 许金通, 王玲, 等. GaN基雪崩光电二极管及其研究进展[J]. 红外与激光工程, 2014, 43(4): 1215-1221.

    Liu F H, Xu J T, Wang L, et al. GaN-based avalanche photodiodes and its recent development[J]. Infrared and Laser Engineering, 2014, 43(4): 1215-1221.

[20] Rauch T, Bberl M, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature Photonics, 2009, 3(6): 332-336.

[21] 沐俊应, 徐娟, 梁氏秋水, 等. 有机薄膜太阳能电池的研究进展[J]. 电子工艺技术, 2007, 28(2): 93-96.

    Mu J Y, Xu J, Liangshi Q S, et al. Progress of organic thin film solar cells[J].Electronics Process Technology, 2007, 28(2): 93-96.

[22] Peumans P, Bulovic V, Forrest S R. Efficient, high-bandwidth organic multilayer photodetectors[J]. Applied Physics Letters, 2000, 76(26): 3855-3857.

[23] 郭姿含, 胡竹斌, 孙真荣, 等. 有机半导体的电子电离能、亲和势和极化能的密度泛函理论研究[J]. 物理化学学报, 2017, 33(6): 1171-1180.

    Guo Z H, Hu Z B, Sun Z R, et al. Density functional theory studies on ionization energies, electron affinities, and polarization energies of organic semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1171-1180.

[24] Li L L, Zhang F J, Wang J, et al. Achieving EQE of 16700% in P3HT∶PC71BM based photodetectors by trap-assisted photomultiplication[J]. Scientific Reports, 2015, 5: 9181.

[25] 张丽, 杨丹, 王好伟, 等. 溶液法制备全有机P3HT光电探测器[J]. 红外与激光工程, 2015, 44(10): 2975-2980.

    Zhang L, Yang D, Wang H W, et al. Solution-processed all-organic P3HT-based photodetector[J]. Infrared and Laser Engineering, 2015, 44(10): 2975-2980.

[26] Li L L, Zhang F J, Wang W B, et al. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37500%[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5890-5897.

[27] Li L L, Zhang F J, Wang W B, et al. Revealing the working mechanism of polymer photodetectors with ultra-high external quantum efficiency[J]. Physical Chemistry Chemical Physics, 2015, 17(45): 30712-30720.

[28] 姬荣斌, 唐利斌, 张筱丹. 有机半导体探测器材料的研究展望[J]. 红外技术, 2006, 28(1): 2-6.

    Ji R B, Tang L B, Zhang X D. The prospect of the study on organic semiconductor detector materials[J]. Infrared Technology, 2006, 28(1): 2-6.

[29] Esopi M R, Calcagno M, Yu Q M. Organic ultraviolet photodetectors exhibiting photomultiplication, low dark current, and high stability[J]. Advanced Materials Technologies, 2017, 2(8): 1700025.

[30] 李文连. 有机/聚合物光探测器(PDs)[J]. 光机电信息, 2011, 28(4): 1-15.

    Li W L. Organic/polymer photodetector (PDs)[J]. OME Information, 2011, 28(4): 1-15.

[31] Huang J S, Yang Y. Origin of photomultiplication in C60 based devices[J]. Applied Physics Letters, 2007, 91(20): 203505.

[32] Wu S H, Li W L, Chu B, et al. High performance small molecule photodetector with broad spectral response range from 200 to 900 nm[J]. Applied Physics Letters, 2011, 99(2): 023305.

[33] Hiramoto M, Imahigashi T, Yokoyama M. Photocurrent multiplication in organic pigment films[J]. Applied Physics Letters, 1994, 64(2): 187-189.

[34] 王海波, 闫东航. 结晶性有机半导体异质结器件[J]. 中国科学, 2009, 39(1): 1-21.

    Wang H B, Yan D H. Crystalline organic semiconductor heterojunction devices[J]. Science China, 2009, 39(1): 1-21.

[35] Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells: towards 10% energy-conversion efficiency[J]. Advanced Materials, 2006, 18(6): 789-794.

[36] 张天慧, 朴玲钰, 赵谡玲, 等. 有机太阳能电池材料研究新进展[J]. 有机化学, 2011, 31(2): 260-272.

    Zhang T H, Piao L Y, Zhao S L, et al. New progress in study of organic solar cell materials[J]. Chinese Journal of Organic Chemistry, 2011, 31(2): 260-272.

[37] 田正浩, 司长峰, 屈文山, 等. 基于溶液加工氧化石墨烯的高性能有机太阳能电池[J]. 光学学报, 2017, 37(4): 0416001.

    Tian Z H, Si C F, Qu W S, et al. High-performance organic photovoltaics using solution-processed graphene oxide[J]. Acta Optica Sinica, 2017, 37(4): 0416001.

[38] Katsume T, Hiramoto M, Yokoyama M. Photocurrent multiplication in naphthalene tetracarboxylic anhydride film at room temperature[J]. Applied Physics Letters, 1996, 69(24): 3722-3724.

[39] Hiramoto M, Kawase S, Yokoyama M. Photoinduced hole injection multiplication in p-type quinacridone pigment films[J]. Japanese Journal of Applied Physics, 1996, 35(3A): L349-L351.

[40] Hiramoto M, Nakayama K, Katsume T, et al. Field-activated structural traps at organic pigment/metal interfaces causing photocurrent multiplication phenomena[J]. Applied Physics Letters, 1998, 73(18): 2627-2629.

[41] Hiramoto M, Sato I, Nakayama K, et al. Photocurrent multiplication at organic/metal interface and morphology of metal films[J]. Japanese Journal of Applied Physics, 1998, 37: L1184-L1186.

[42] 黄迪, 徐征, 赵谡玲, 等. 不同受体对PTB7聚合物太阳能电池的性能影响的研究[J]. 光谱学与光谱分析, 2016, 36(8): 2363-2367.

    Huang D, Xu Z, Zhao S L, et al. Understanding the effected efficiencies of polymer solar cells employing different fullerene multiadducts as acceptors[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2363-2367.

[43] Wang W B, Zhang F J, Li L L, et al. Improved performance of photomultiplication polymer photodetectors by adjustment of P3HT molecular arrangement[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22660-22668.

[44] 卓祖亮, 张福俊, 许晓伟, 等. 退火处理提高P3HT∶PCBM聚合物太阳能电池光伏性能[J]. 物理化学学报, 2011, 27(4): 875-880.

    Zhuo Z L, Zhang F J, Xu X W, et al. Photovoltaic performance improvement of P3HT∶PCBM polymer solar cells by annealing treatment[J]. Acta Physico-Chimica Sinica, 2011, 27(4): 875-880.

[45] Melancon J M, Zivanovic S R. Broadband gain in poly(3-hexylthiophene): phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer[J]. Applied Physics Letters, 2014, 105(16): 163301.

[46] Wang T N, Hu Y F, Deng Z B, et al. High sensitivity, fast response and low operating voltage organic photodetectors by incorporating a water/alcohol soluble conjugated polymer anode buffer layer[J]. RSC Advances, 2017, 7(3): 1743-1748.

[47] Zhou X K, Yang D Z, Ma D G, et al. Ultrahigh gain polymer photodetectors with spectral response from UV to near-infrared using ZnO nanoparticles as anode interfacial layer[J]. Advanced Functional Materials, 2016, 26(36): 6619-6626.

[48] Guo F W, Xiao Z G, Huang J S. Fullerene photodetectors with a linear dynamic range of 90 dB enabled by a cross-linkable buffer layer[J]. Advanced Optical Materials, 2013, 1(4): 289-294.

[49] Miao J L, Zhang F J, Lin Y Z, et al. Highly sensitive organic photodetectors with tunable spectral response under bi-directional bias[J]. Advanced Optical Materials, 2016, 4(11): 1711-1717.

[50] Guo F W, Yang B, Yuan Y B, et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection[J]. Nature Nanotechnology, 2012, 7(12): 798-802.

[51] Qi D F, Fischbein M. Efficient polymer-nanocrystal quantum-dot photodetectors[J]. Applied Physics Letters, 2005, 86(9): 093103.

[52] Campbell I H, Crone B K. Bulk photoconductive gain in poly(phenylene vinylene) based diodes[J]. Journal of Applied Physics, 2007, 101(2): 024502.

[53] Chen H Y, Lo M K, Yang G W, et al. Nanoparticle-assisted high photoconductive gain in polymer/fullerene matrix[J]. Nature Nanotechnology, 2008, 3(9): 543-547.

[54] Chen F C, Chien S C, Cious G L. Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response[J]. Applied Physics Letters, 2010, 97(10): 103301.

[55] 张剑, 杨秀程, 冯晓东. 有机太阳能电池结构研究进展[J]. 电子元件与材料, 2012, 31(11): 79-82.

    Zhang J, Yang X C, Feng X D. Research progress of organic solar cells structure[J]. Electronic Components and Materials, 2012, 31(11): 79-82.

[56] Jansen-van Vuuren R D, Armin A, Pandey A K, et al. Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.

[57] 闫东航, 王海波, 杜宝勋. 有机半导体异质结导论[M].北京: 科学出版社, 2008.

    Yan D H, Wang H B, Du B X. Organic semiconductor heterostructure introduction[M]. Beijing: Science Press, 2008.

[58] Hiramoto M, Fujino K, Yoshida M, et al. Influence of oxygen and water on photocurrent multiplication in organic semiconductor films[J]. Japanese Journal of Applied Physics, 2003, 42(2A): 672-675.

[59] Hiramoto M, Suemori K, Yokoyama M. Influence of oxygen on photocurrent multiplication phenomenon at organic/metal interface[J]. Japanese Journal of Applied Physics, 2003, 42(4): 2495-2497.

[60] Hammond W T, Xue J G. Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain[J]. Applied Physics Letters, 2010, 97(7): 073302.

[61] Dubler T K, Neher D, Rost H, et al. Efficient bulk photogeneration of charge carriers and photoconductivity gain in arylamino-PPV polymer sandwich cells[J]. Physical Review B, 1999, 59(3): 1964-1972.

[62] Li X L, Wang S R, Xiao Y, et al. A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on Y-type titanylphthalocyanine nanoparticles[J]. Journal of Materials Chemistry C, 2016, 4: 5584-5592.

[63] Wang W Y, Hao Y Y, Cui Y X, et al. High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices[J]. Optics Express, 2014, 22(S2): A376-A385.

[64] Cui Y X, Zhao H Y, Yang F, et al. Efficiency enhancement in organic solar cells by incorporating silica-coated gold nanorods at the buffer/active interface[J]. Journal of Materials Chemistry C, 2015, 3(38): 9859-9868.

[65] Hao Y, Song J C, Yang F, et al. Improved performance of organic solar cells by incorporating silica-coated silver nanoparticles in the buffer layer[J]. Journal of Materials Chemistry C, 2015, 3(5): 1082-1090.

[66] Liu D K, Liang Q B, Li G H, et al. Improved efficiency of organic photovoltaic cells by incorporation of AuAg-alloyed nanoprisms[J]. IEEE Journal of Photovoltaics, 2017, 7(4): 1036-1041.

[67] Wang W B, Zhang F J, Bai H T, et al. Photomultiplication photodetectors with P3HT: fullerene-free material as the active layers exhibiting a broad response[J]. Nanoscale, 2016, 8(10): 5578-5586.

[68] Nakayama K I, Hiramoto M, Yokoyama M. Photocurrent multiplication at organic/metal interface and surface morphology of organic films[J]. Journal of Applied Physics, 2000, 87(7): 3365-3369.

[69] Fang Y J, Guo F W, Xiao Z G, et al. Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 dB[J]. Advanced Optical Materials, 2014, 2(4): 348-353.

[70] Nakayama K I, Hiramoto M, Yokoyama M. A high-speed photocurrent multiplication device based on an organic double-layered structure[J]. Applied Physics Letters, 2000, 76(9): 1194-1196.

[71] Hiramoto M, Miki A, Yoshida M, et al. Photocurrent multiplication in organic single crystals[J]. Applied Physics Letters, 2002, 81(8): 1500-1502.

[72] Matsunobu G, Oishi Y, Yokoyama M, et al. High-speed multiplication-type photodetecting device using organic codeposited films[J]. Applied Physics Letters, 2002, 81(7): 1321-1322.

[73] Chuang S T, Chien S C, Chen F C. Extended spectral response in organic photomultiple photodetectors using multiple near-infrared dopants[J]. Applied Physics Letters, 2012, 100(1): 013309.

[74] Dong R, Bi C, Dong Q F, et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain[J]. Advanced Optical Materials, 2014, 2(6): 549-554.

[75] Wang W B, Zhang F J, Li L L, et al. Highly sensitive polymer photodetectors with a broad spectral response range from UV light to the near infrared region[J]. Journal of Materials Chemistry C, 2015, 3(28): 7386-7393.

[76] Liu C, Peng H, Wang K, et al. PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors[J]. Nano Energy, 2016, 30: 27-35.

[77] Zhou L, Wang R, Yao C, et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers[J]. Nature Communications, 2015, 6: 6938.

[78] Nishiwaki S, Nakamura T, Hiramoto M, et al. Efficient colour splitters for high-pixel-density image sensors[J]. Nature Photonics, 2013, 7(3): 240-246.

[79] Wan Y, Zhou Y G, Poudineh M, et al. Highly specific electrochemical analysis of cancer cells using multi-nanoparticle labeling[J]. Angewandte Chemie, 2014, 53(48): 13145-13149.

[80] Kelley S O, Mirkin C A, Walt D R, et al. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering[J]. Nature Nanotechnology, 2014, 9(12): 969-980.

[81] Shen L, Zhang Y, Bai Y, et al. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain[J]. Nanoscale, 2016, 8(26): 12990-12997.

[82] Lee M L, Chi P F, Sheu J K. Photodetectors formed by an indium tin oxide/zinc oxide/p-type gallium nitride heterojunction with high ultraviolet-to-visible rejection ratio[J]. Applied Physics Letters, 2009, 94(1): 013512.

[83] Xu T, Wu Y K, Luo X G, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nature Communications, 2010, 1: 59.

[84] Park H, Dan Y P, Seo K, et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption[J]. Nano Letters, 2014, 14(4): 1804-1809.

[85] Jansen-van Vuuren, R D, Pivrikas A, Pandey A, et al. Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers[J]. Journal of Materials Chemistry C, 2013, 1(22): 3532-3543.

[86] Su Z S, Li W L, Chu B, et al. High response organic ultraviolet photodetector based on blend of 4, 4′, 4″-tri(2-methylphenyl phenylamino)triphenylaine and tris(8-hydroxyquinoline) gallium[J]. Applied Physics Letters, 2008, 93(10): 103309.

[87] Wang W B, Zhang F J, Du M D, et al. Highly narrowband photomultiplication type organic photodetectors[J]. Nano Letters, 2017, 17(3): 1995-2002.

[88] Reynaert J, Arkhipov V I, Heremans P, et al. Photomultiplication in disordered unipolar organic materials[J]. Advanced Functional Materials, 2006, 16(6): 784-790.

[89] Cui Y X, Fung K H, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447.

[90] Cui Y X, He Y R, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.

[91] Wang W Y, Cui Y X, Fung K H, et al. Comparison of nanohole-type and nanopillar-type patterned metallic electrodes incorporated in organic solar cells[J]. Nanoscale Research Letters, 2017, 12: 538.

[92] 卢辉东, 铁生年, 刘杰. 银纳米光栅增加晶体硅薄膜太阳能电池光吸收的研究[J]. 激光与光电子学进展, 2016, 53(8): 080401.

    Lu H D, Tie S N, Liu J. Absorption enhancement of crystalline silicon thin film solar cell using nano binary silver grating[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080401.

[93] Ji T, Wang Y S, Cui Y X, et al. Flexible broadband plasmonic absorber on moth-eye substrate[J]. Materials Today Energy, 2017, 5: 181-186.

[94] Wang Z Y, Hao Y Y, Wang W Y, et al. Incorporating silver-SiO2, core-shell nanocubes for simultaneous broadband absorption and charge collection enhancements in organic solar cells[J]. Synthetic Metals, 2016, 220: 612-620.

[95] 王玥, 王暄, 李龙威. 基于表面等离激元薄膜太阳能电池陷光特性的研究[J]. 激光与光电子学进展, 2015, 52(9): 092401.

    Wang Y, Wang X, Li L W. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.

[96] Hao Y, Hao Y Y, Sun Q J, et al. Broadband EQE enhancement in organic solar cells with multiple-shaped silver nanoparticles: optical coupling and interfacial engineering[J]. Materials Today Energy, 2017, 3: 84-91.

高秀云, 张叶, 崔艳霞, 刘艳珍, 李国辉, 石林林, 郝玉英. 有机光电倍增探测器研究进展[J]. 激光与光电子学进展, 2018, 55(7): 070001. Gao Xiuyun, Zhang Ye, Cui Yanxia, Liu Yanzhen, Li Guohui, Shi Linlin, Hao Yuying. Research Progress in Organic Photomultiplication Photodetector[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!