光子学报, 2011, 40 (5): 667, 网络出版: 2011-06-14   

激光扫描实时共聚焦显微成像系统设计

Design and Optimization in Constructing An In-vivo Confocal Laser Scanning Microscopy
作者单位
中国科学院长春光学精密机械与物理研究所,长春 130033
摘要
共聚焦扫描显微镜已成为生物医学和材料科学领域研究中非常有价值的一种工具.本文给出了一种反射型激光扫描共聚焦显微成像系统的系统结构和具体设计.采用多面体转镜进行水平扫描,摆镜进行垂直扫描.利用商品透镜设计了光学扫描中继系统,采用光电倍增管作为激发出的荧光探测器,同时给出了数据采集和扫描同步控制系统的组成与设计.利用CODE V优化光学扫描系统以获得尽可能小的扫描光斑尺寸和较大的视场,并综合考虑了采样频率、扫描速度和探测器对整个系统性能的影响,从而给出了该型共聚焦显微成像系统的相互匹配的设计参量.分析结果表明:共聚焦扫描系统设计合理可行;从光学扫描系统到PMT探测单元的各项技术指标得到优化,满足实时探测的要求;该系统具有适应性强,易升级,低成本的技术特点,同时可达到同类商品的技术性能.
Abstract
Confocal laser scanning microscopy(CLSM) is an invaluable tool for a wide range of investigations in the biological and medical sciences. A type construction of laser con-focal scanning and fluorescent detection system was provided. A polygon mirror and a galvanometer scanner were used to implement x-y scan. The relay optical system was designed based on commercial lens with optimized consideration to achieve small scan spot size, large Field-of-View and high efficiency. Fluorescence was detected by a photomultiplier tube with excellent signal-to-noise ratio. The scan system control and image acquisition were designed with an optimized scan velocity and sample clock. All these measures could reduce the blurring effect in the whole imaging process and improve the resolution. The analysis results show that the design of the CLSM is reasonable and all components achieve an optimized consideration for in-vivo scanning imaging; this type of CLSM are easily accessible and can be upgraded according to optical requirements; the performance is comparable to available commercial products, but is superior in many aspects of cost, flexibility and versatility.
参考文献

[1] MULLER M, SCHMIDT J, MIRONOV S L, et al. Construction and performance of a custom-built two-photon laser scanning system[J]. J Phys D: Appl Phys,2003, 36(14): 1747-1757.

[2] CHOU D R, BOWER B A, WAX A. Low-cost, scalable laser scanning module for real-time reflectance and fluorescence confocal microscopy[J]. Applied Optics, 2005, 44(11): 2013-2018.

[3] XI P, RAJWA B, JONES J T, et al. The design and construction of a cost-efficient confocal laser scanning microscope[J]. Am J Phys, 2007, 75(3): 203-207.

[4] QIU Z R, QIN J, ZHANG H W, et al. An optimized design of a scanning confocal probe[C]. SPIE, 2006, 6288: 0X01-0X09.

[5] CALLAMARAS N, PARKER I. Construction of a confocal microscope for real-time x-y and x-z imaging[J]. Cell Calcium, 1999, 26(6): 271-279.

[6] LIANG C, DESCOUR M R, SUNG K B, et al. Fiber confocal reflectance microscope (FCRM) for in-vivo imaging[J]. Opt Express, 2001, 9(13): 821-830.

[7] LEYBAERT L, de MEYER A, MABILDE C. A simple and practical method to acquire geometrically correct images with resonant scanning-based line scanning in a custom-built video-rate laser scanning microscope[J]. Journal of Microscopy, 2005, 219(3): 13-140.

[8] IM K B, HAN S, PARK H, et al. Simple high-speed confocal line-scanning Microscope[J]. Optics Express, 2005, 13(13): 5151-5156.

[9] LI Z, HERRMANN K, POHLENZ F. Lateral scanning confocal microscopy for the determination of in-plane displacements of microelectromechanical systems devices[J].Optics Letters, 2007, 32(12): 1473-1475.

[10] SANDERSON M J. Acquisition of multiple real-time images for laser scanning microscopy[J]. Microscopy and analysis, 2004, 7(4): 17-23.

[11] BAE Y S, LEE D, MOON S, et al. Confocal Fluorescence lifetime imaging microscopy based on a realtime sampling method[C]. SPIE, 2007, 6443: 0W-1-0W-8.

李朝辉. 激光扫描实时共聚焦显微成像系统设计[J]. 光子学报, 2011, 40(5): 667. LI Zhao-hui. Design and Optimization in Constructing An In-vivo Confocal Laser Scanning Microscopy[J]. ACTA PHOTONICA SINICA, 2011, 40(5): 667.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!