光子学报, 2016, 45 (3): 0314007, 网络出版: 2016-04-01   

液冷薄片构型激光器及其热管理技术

Thermal Management Technology of a Liquid Cooling Thin-disk Oscillator
作者单位
1 长安大学 信息工程学院,西安 710069
2 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710119
摘要
为了解决增益介质的热效应问题,提出了一种浸没式构型液冷激光器方案,该构型激光器在10Hz重复抽运频率下,获得了615mJ的能量输出,光光转换效率为21%,斜率效率为23%.基于流体力学和热力学原理,建立了激光器增益区流场的热-流-固耦合模型,利用软件模拟和有限元分析法,研究了在不同流速、泵浦功率条件下,整个增益区的温度场、速度场的分布特性;并基于增益区温度场的分布,分析了液冷条件下通过增益区的激光波前畸变特性.结果表明,增益介质的最大光程差为0.7666λ,冷却液最大光程差为-4.7331λ,说明该构型激光器有着良好的热管理性能.
Abstract
In order to solve the problem of the thermal effect of the laser gain media, a configuration named “immersed thin-disk oscillator”solid laser cooled directly with flow was proposed. Under the repeated pumping frequency of 10Hz,a maximum output energy of 615mJ was realized. The optical-optical efficiency and the slope efficiency is 23% and 21% respectively. Based on the principle of fluid mechanics and thermodynamics,the thermal-flow-solid coupling model of lasing region was established. By using the software and the method of finite element analysis, the distribution characteristics of temperature field and velocity field were studied under the conditions of different flow rate and pump power. The wavefront aberration of the laser passing the gain region was simulated under the condition of liquid-cooled. The maximum optical path difference of the gain medium and coolant liquid are 0.7666λ and -4.7331λ respectively. The results show that the laser has a good thermal management performance.
参考文献

[1] 李隆, 甘安生, 齐兵,等. LD端面抽运变导热系数Nd:YAG晶体热效应[J]. 激光技术, 2012, 36(5):612-616.

    LI Long, GAN An-sheng, QI Bing, et al. Thermal effect of LD end-pumped Nd:YAGcrystal with variable thermal conductivity[J]. Laser Technology, 2012, 36(5):612-616.

[2] 彭玉峰, 吴定允, 张毅,等. 高功率激光反射镜热畸变补偿结构设计与仿真[J]. 激光技术, 2012, 36(1): 120-123.

    PENG Yu-feng, WU Ding-yun, ZHANG Yi, et al. Simulation and structure design of a high power laser mirror with self-compensation of thermal distortion[J]. Laser Technology, 2012, 36(1): 120-123.

[3] 任国光. 新型战术高能液体激光器[J]. 激光技术, 2006, 30(4): 418-421.

    REN Guo-guang. New tactical high energy liquid laser[J]. Laser Technology, 2006, 30(4): 418-421.

[4] 周寿桓, 赵鸿, 唐小军. 高平均功率全固态激光器[J]. 中国激光, 2009, 36(7): 1605-1618.

    ZHOU Shou-heng, ZHAO Hong, TANG Xiao-jun. High average power laser diode pumped solid-state laser [J]. Chinese Laser, 2009, 36(7): 1605-1618.

[5] 雷呈强, 汪岳峰, 黄峰,等. 高功率全固态激光器抽运耦合技术发展[J]. 激光技术, 2011, 35(6):725-733.

    LEI Cheng-qiang, WANG Yue-feng, HUANG Feng, et al. Progress of high power solid-state laser pumping and coupling technology[J]. Laser Technology, 2011, 35(6):725-733.

[6] 宋琼阁, 程光华, 白晶, 等. 直接水冷的Yb:YAG薄片激光器系统设计与实验研究[J]. 光子学报, 2014, 10(43).

    SONG Qiong-ge, CHENG Guang-hua, BAI Jing, et al. System design and research of Yb:YAG thin disk laser with direct cooling arrangement [J]. Acta Photonica Sinica, 2014, 10(43).

[7] Gizmag’s Email Newslecter, General Atomics USA[EB/OL].[2015-05-30].http://www.gizmag.com/lightweight-high-energy-liquid-laser-hellads-live-fire-tests/37742/.

[8] FU X, LI P L, LIU Q, et al. 3KW liquid-cooled elastically-supported Nd:YAG multi-slab CW laser resonator[J]. Optics Express, 2014, 22(15): 18421.10.

[9] NIE R Z, SHE J B, ZHAO P F, et al. Fully immersed liquid cooling thin-disk oscillator[J]. Laser Physics Letters, 2014, 11(11): 115808.

[10] LI P L, FU X, LIU Q, et al. Effects of turbulent flow field on wavefront aberration in liquid-convection-cooled disk laser oscillator [J].Applied Physics B: Laser and Optics, 2015, 119(2): 371-380.

[11] 王明哲. 高功率固体激光器热管理新技术研究[D]. 长沙:国防科技大学, 2011: 12-13.

    WANG Ming-zhe. Research on new cooling technology for thermal management of high power solid-state lasers[D]. Chang Sha: National University of Defense Technology, 2011:12-13.

[12] 裴正平, 唐淳, 涂波, 等. Nd: YAG 薄片激光器热致波前畸变[J]. 强激光与粒子束, 2006, 18(10): 1615-1618.

    PEI Zheng-ping, TANG Chun, TU Bo, et al. Simulation of thermal effect on beam distortion in Nd:YAG thin disk laser[J]. High Power Laser and Particle Beams, 2006,18(10): 1615-1618.

[13] 丁建永,桂珞,彭波,等. 掺钕玻璃微球阵列激光器及其热管理研究[J]. 激光技术, 2014,38(3): 17-20.

    DING Jian-yong, GUI Luo, PENG Bo, et al. Thermal analysis of the neodymium-doped microspheres array lasers[J]. Laser Technology, 2014, 38(3): 17-20.

杨鹏, 马仑, 姜彦玲, 李伟, 聂荣志, 赵朋飞, 佘江波. 液冷薄片构型激光器及其热管理技术[J]. 光子学报, 2016, 45(3): 0314007. YANG Peng, MA Lun, JIANG Yan-ling, LI Wei, NIE Rong-zhi, ZHAO Peng-fei, SHE Jiang-bo. Thermal Management Technology of a Liquid Cooling Thin-disk Oscillator[J]. ACTA PHOTONICA SINICA, 2016, 45(3): 0314007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!