光学学报, 2021, 41 (2): 0214001, 网络出版: 2021-02-27  

基于掩埋光栅一级分布反馈结构的太赫兹量子级联激光器 下载: 963次

Terahertz Quantum Cascade Laser of First-Order Distributed Feedback Based on a Buried Grating
作者单位
1 中国科学院上海技术物理研究所红外成像材料与器件院重点实验室, 上海 200083
2 中国科学院大学, 北京100049
引用该论文

常高垒, 朱欢, 俞辰韧, 朱海卿, 徐刚毅, 何力. 基于掩埋光栅一级分布反馈结构的太赫兹量子级联激光器[J]. 光学学报, 2021, 41(2): 0214001.

Gaolei Chang, Huan Zhu, Chenren Yu, Haiqing Zhu, Gangyi Xu, Li He. Terahertz Quantum Cascade Laser of First-Order Distributed Feedback Based on a Buried Grating[J]. Acta Optica Sinica, 2021, 41(2): 0214001.

参考文献

[1] Koehler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885): 156-159.

[2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105.

[3] 徐赵龙, 解研, 王迎新, 等. 太赫兹量子级联激光器自混合干涉测量技术研究[J]. 光学学报, 2020, 40(11): 1114003.

    Xu Z L, Xie Y, Wang Y X, et al. Self-mixing interferometry with terahertz quantum cascade lasers[J]. Acta Optica Sinica, 2020, 40(11): 1114003.

[4] Williams B S, Kumar S, Callebaut H, et al. Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement[J]. Applied Physics Letters, 2003, 83(11): 2124-2126.

[5] Kumar S, Williams B S, Kohen S, et al. Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature[J]. Applied Physics Letters, 2004, 84(14): 2494-2496.

[6] Orlova E E, Hovenier J N, Klaassen T O, et al. Antenna model for wire lasers[J]. Physical Review Letters, 2006, 96(17): 173904.

[7] Kumar S, Williams B S, Qin Q, et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides[J]. Optics Express, 2007, 15(1): 113-128.

[8] Mahler L, Tredicucci A, Beltram F, et al. Finite size effects in surface emitting terahertz quantum cascade lasers[J]. Optics Express, 2009, 17(8): 6703-6709.

[9] Xu G, Colombelli R, Khanna S P, et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures[J]. Nature Communications, 2012, 3: 952.

[10] Xu G Y, Halioua Y, Moumdji S, et al. Stable single-mode operation of surface-emitting terahertz lasers with graded photonic heterostructure resonators[J]. Applied Physics Letters, 2013, 102(23): 231105.

[11] Xu G Y, Li L H, Isac N, et al. Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range[J]. Applied Physics Letters, 2014, 104(9): 091112.

[12] Jin Y, Gao L, Chen J, et al. High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings[J]. Nature Communications, 2018, 9: 1407.

[13] Amanti M I, Fischer M, Scalari G, et al. Low-divergence single-mode terahertz quantum cascade laser[J]. Nature Photonics, 2009, 3(10): 586-590.

[14] Zhu H, Zhu H Q, Wang F F, et al. Terahertz master-oscillator power-amplifier quantum cascade laser with a grating coupler of extremely low reflectivity[J]. Optics Express, 2018, 26(2): 1942-1953.

[15] Zhu H, Wang F F, Yan Q, et al. Terahertz master-oscillator power-amplifier quantum cascade lasers[J]. Applied Physics Letters, 2016, 109(23): 231105.

[16] Wang T, Liu J Q, Li Y F, et al. High-power distributed feedback terahertz quantum cascade lasers[J]. IEEE Electron Device Letters, 2013, 34(11): 1412-1414.

[17] Li H, Manceau J M, Andronico A, et al. Coupled-cavity terahertz quantum cascade lasers for single mode operation[J]. Applied Physics Letters, 2014, 104(24): 241102.

[18] Li Z P, Li H, Wan W J, et al. Sideband generation of coupled-cavity terahertz semiconductor lasers under active radio frequency modulation[J]. Optics Express, 2018, 26(25): 32675-32690.

[19] Li Y Y, Liu J Q, Liu F Q, et al. High-performance operation of distributed feedback terahertz quantum cascade lasers[J]. Electronics Letters, 2016, 52(11): 945-947.

[20] Wang T, Liu J Q, Liu F Q, et al. High-power single-mode tapered terahertz quantum cascade lasers[J]. IEEE Photonics Technology Letters, 2015, 27(14): 1492-1494.

[21] Zhao F Y, Li Y Y, Liu J Q, et al. Sampled grating terahertz quantum cascade lasers[J]. Applied Physics Letters, 2019, 114(14): 141105.

[22] 李鑫, 王健, 杨宁, 等. 二阶分布反馈太赫兹量子级联激光器的光学特性[J]. 光学学报, 2018, 38(4): 0414002.

    Li X, Wang J, Yang N, et al. Optical characteristics of second-order distributed feedback terahertz quantum cascade laser[J]. Acta Optica Sinica, 2018, 38(4): 0414002.

[23] ChuangS. Physics of photonic devices[M]. 2nd ed.New Jersey: John Wiley & Sons, 2009: 415- 420.

[24] Kane M J, Emeny M T, Apsley N, et al. Intersubband absorption and infrared modulation in GaAs/AlGaAs single quantum wells[J]. Superlattices and Microstructures, 1989, 5(4): 587-589.

[25] Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-1020.

常高垒, 朱欢, 俞辰韧, 朱海卿, 徐刚毅, 何力. 基于掩埋光栅一级分布反馈结构的太赫兹量子级联激光器[J]. 光学学报, 2021, 41(2): 0214001. Gaolei Chang, Huan Zhu, Chenren Yu, Haiqing Zhu, Gangyi Xu, Li He. Terahertz Quantum Cascade Laser of First-Order Distributed Feedback Based on a Buried Grating[J]. Acta Optica Sinica, 2021, 41(2): 0214001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!