光谱学与光谱分析, 2020, 40 (6): 1956, 网络出版: 2020-12-08   

叶表面偏振反射测量对冬小麦氮含量高光谱估算的提升

Improvement of Hyperspectral Estimation of Nitrogen Content in Winter Wheat by Leaf Surface Polarized Reflection Measurement
作者单位
1 北京大学地球与空间科学学院空间信息集成与3S工程应用北京市重点实验室, 北京 100871
2 北京农业信息技术研究中心, 北京 100097
摘要
高光谱遥感为冬小麦氮含量的实时估测提供了技术途径, 然而在实际探测过程中, 接收的信号不仅包含植株叶、 茎等器官内部发生多次散射后的光辐射, 也包含在叶片表面发生镜面反射而没有进入器官内部的光辐射, 原理上只有前者可反映植株的生化组分信息, 因此目前常用的反演算法存在较大不确定性。 拟采用增加偏振测量的方式, 区分与上述两种情形对应的非偏振光和部分偏振光, 通过构建相应的反射率表征因子, 以评估剔除部分偏振反射分量对植株氮含量估算的影响。 实验获取了冬小麦拔节、 挑旗、 开花、 灌浆四个典型生长期共计48组偏振高光谱与氮含量测量样本, 分析后表明, 剔除偏振反射后, 反射率光谱与氮含量的相关性在可见光波段有较明显的提升, 而常用的多个植被指数对氮含量的估算精度有小幅提升, 且不同生长期对应的最优植被指数不同。 上述结果证明了通过测量叶表偏振反射而提升冬小麦氮含量高光谱估算方法的有效性与稳定性, 为提升植被生化组分遥感反演的精度提供了参考。
Abstract
Hyperspectral remote sensing provides an effective way for real-time prediction of plant nitrogen content (PNC) in winter wheat plants. In hyperspectral detection, energy received by the sensor is divided into unpolarized light, which comes from multiple scattering inside the plant, and partially polarized light, which is from the foliar surface, while the latter does not contain nitrogen content information. This paper aims to evaluate the influence of this part of the surface polarization reflection on the PNC estimation. The canopy bidirectional reflectance factor (BRF) in nadir direction of 48 plots in periods of jointing, flagging, flowering and grouting of winter wheat were obtained, and the polarization component was assembled in front of the spectrometer fiber. The polarized reflectance (pBRF) is obtained, and the diffused reflectance factor (dBRF), which partially removes the surface reflection, is obtained by removing the pBRF from the BRF. Using spectral regression and vegetation index (VI) methods, the results of BRF, dBRF, and the existing methods considering removing surface reflection, were compared, to prove the effectiveness and stability of the polarization method. Evaluate the correlation between PNC and BRF & dBRF spectrum; in the spectral regression method, interval partial least squares regression (iPLSR) was used for PNC estimation. The method considering first-order derivative BRF (derBRF) was also compared. For the VI method, the PNC-VI models were established by using 7 VIs. The existed modified VI (mVI) models were also compared for analysis of the advantages and stability of the polarization-dBRF method. Finally, the non-negligibility of polarization reflection, the accurate estimation of surface reflection and the main error sources of the experiment were discussed and analyzed. After the removal of the polarized reflection, the correlation between the reflectance spectrum and PNC is significant in the visible band. The correlation coefficient increased from 0.68 to 0.72 in the blue band and slightly increased in the other spectral regions. In the spectral regression method, the root means square error RMSE of the predicted-measured PNC and dBRF spectrum reduced from 0.30% to 0.23%, indicating 23%’s error reduction; the estimation result is better than derBRF. The method demonstrates the effectiveness of the polarization method. In the vegetation index method, the accuracy of the PNC estimation model of the 7 VIs after polarization removal is slightly improved, and the result is better than the mVI method, which proves the stability of the polarization method. The ND680 (NDVI), ND705 and OSAVI indices yielded better PNC estimation in flowering and grouting periods, with the modeling relative RMSE (RRMSE) within 11%; SR705 and NDNI performed the best in jointing and flagging periods, with the modeling RRMSE within 13%. This study provides a reference for improving the accuracy of remote sensing retrieval of vegetation components.
参考文献

[1] YANG Fu-qin, FENG Hai-kuan, LI Zhen-hai, et al(杨福芹, 冯海宽, 李振海, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2015, 46(11): 112.

[2] WANG Chao, WANG Jian-ming, FENG Mei-chen, et al(王 超, 王建明, 冯美臣, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(5): 1520.

[3] CHEN Yong-zhe, FU Bo-jie, FENG Xiao-ming, et al(陈永喆, 傅伯杰, 冯晓明, 等). Acta Ecologica Sinica(生态学报), 2017, 37(18): 6240.

[4] Yao X, Huang Y, Shang G, et al. Remote Sensing, 2015, 7: 14939.

[5] Wang Z, Skidmore A K, Wang T, et al. International Journal of Applied Earth Observation and Geoinformation, 2017, 54: 84.

[6] Tian Y C, Yao X, Yang J, et al. Field Crops Research, 2011, 120: 299.

[7] YANG Bin, YAN Lei, Knyazikhin Yuri, et al(杨 彬, 晏 磊, Knyazikhin Yuri等). Journal of Remote Sensing(遥感学报), 2018, 22(6): 935.

[8] Knyazikhin Y, Schull M A, Stenberg P, et al. Proceedings of the National Academy of Sciences, 2013, 110(3): E185.

[9] Li Y, Chen Y, Huang J. IEEE Transactions on Geoscience and Remote Sensing. 2019, (99): 1.

[10] Yang B, Knyazikhin Y, Mttus M, et al. Remote Sensing of Environment, 2017, 198: 69.

[11] Sims D A, Gamon J A. Remote Sensing of Environment. 2002, 81: 337.

[12] LI Fen-ling, CHANG Qing-rui, SHEN Jian, et al(李粉玲, 常庆瑞, 申 健). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2016, 32(9): 157.

[13] Yang B, Knyazikhin Y, Xie D, et al. Remote Sensing, 2018, 10: 1632.

林沂, 刘思远, 晏磊, 冯海宽, 赵帅阳, 赵红颖. 叶表面偏振反射测量对冬小麦氮含量高光谱估算的提升[J]. 光谱学与光谱分析, 2020, 40(6): 1956. LIN Yi, LIU Si-yuan, YAN Lei, FENG Hai-kuan, ZHAO Shuai-yang, ZHAO Hong-ying. Improvement of Hyperspectral Estimation of Nitrogen Content in Winter Wheat by Leaf Surface Polarized Reflection Measurement[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1956.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!