中国激光, 2016, 43 (12): 1210002, 网络出版: 2016-12-09   

基于模间干涉的折射率/曲率不敏感型PbS光纤温度传感器

Refractive Index and Curvature Insensitive PbS Fiber Temperature Sensor Based on Inter-modal Interference Principle
作者单位
1 燕山大学信息科学与工程学院河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
2 上海大学特种光纤与光接入网省部共建重点实验室, 上海 200072
摘要
提出了一种基于硫化铅(PbS)光纤的折射率/曲率不敏感的光纤温度传感器。该传感器制作简单,只需将一段PbS光纤无错位熔接在两段单模光纤之间即可。由于PbS光纤纤芯特殊的折射率分布,当光线由输入单模光纤进入PbS光纤时,它会在PbS光纤纤芯中激发出不同的模式,不同模式在进入输出单模光纤时将会发生干涉。当外界环境温度变化时,PbS光纤中不同模式间的光程差将会发生变化,从而引起传感器传输光谱的变化,因此可以通过检测传输光谱的变化实现对外界温度的测量。通过实验发现,PbS光纤长度为4 mm时,即可得到完整的周期性干涉谱。对该传感器进行温度、折射率与曲率传感实验,可得温度灵敏度为55.45 pm/℃,折射率灵敏度为2.08 nm/RIU(其中RIU为单位折射率),曲率灵敏度为-0.29 nm/m-1,说明该传感器对折射率和曲率不敏感,避免了温度测量时,折射率与曲率对其的影响。该传感器具有很小的结构尺寸,能够很好地应用在生物化学、工业生产等的温度测量场合。
Abstract
A refractive index and curvature insensitive temperature sensor based on PbS fiber is proposed. It is simple in fabrication just by splicing a section of PbS fiber between two single mode fibers without dislocation. Due to the special refractive index distribution of the PbS fiber core, the light can be stimulated to different modes in the core when it couples into the PbS fiber from the input single mode fiber. Different modes interfere when they couple into the output single mode fiber. The optical path differences between different modes of the PbS fiber change when the ambient temperature changes. Finally, the transmission spectrum of the sensor has a variation. Monitoring the variation of the transmission spectrum can measure the ambient temperature. Through the experiments, it is found that a complete periodic interference spectrum can be obtained when the length of PbS fiber is 4 mm. The sensing performances of temperature, refractive index and curvature of the sensor are tested, respectively. The results show that the temperature sensitivity of the sensor is 55.45 pm/℃, the refractive index sensitivity is only 2.08 nm/RIU and the curvature sensitivity is only -0.29 nm/m-1, in which RIU is refractive index unit. It means that the sensor is insensitive to refractive index and curvature. So the temperature sensor can avoid the impact of the refractive index and the curvature. The sensor has a small structure size, and it can be well used in biochemistry, industrial production and other temperature measurement occasions.
参考文献

[1] Shen C Y, Zhong C, You Y, et al. Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method[J]. Optics Express, 2012, 20(14): 15406-15417.

[2] 陈伟, 孟洲, 周会娟, 等. 远程干涉型光纤传感系统的非线性相位噪声分析[J]. 物理学报, 2012, 61(18): 184210.

    Chen Wei, Meng Zhou, Zhou Huijuan, et al. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system[J]. Acta Physica Sinica, 2012, 61(18): 184210.

[3] Chen Z H, Lau D, Teo J T, et al. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor[J]. Journal of Biomedical Optics, 2014, 19(5): 057001.

[4] Liu G G, Han M, Hou W L. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity[J]. Optics Express, 2015, 23(6): 7237-7247.

[5] 熊贻坤, 黄旭光. 基于熔融拉锥光纤的液体折射率传感器[J]. 光学学报, 2009, 29(7): 1956-1960.

    Xiong Yikun, Huang Xuguang. Optical fiber sensor for liquid refractive index based on fiber optic taper[J]. Acta Optica Sinica, 2009, 29(7): 1956-1960.

[6] 张玉龙, 贾大功, 李帅, 等. 基于多芯少模光纤位移传感器的研究[J]. 中国激光, 2014, 41(9): 0905006.

    Zhang Yulong, Jia Dagong, Li Shuai, et al. Study of displacement sensor based on few-mode multi-core fiber[J]. Chinese J Lasers, 2014, 41(9): 0905006.

[7] Wu D, Zhu T, Deng M, et al. Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers[J]. Applied Optics, 2011, 50(11): 1548-1553.

[8] 龚元, 郭宇, 饶云江, 等. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析[J]. 物理学报, 2011, 60(6): 064202.

    Gong Yuan, Guo Yu, Rao Yunjiang, et al. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor[J]. Acta Physica Sinica, 2011, 60(6): 064202.

[9] Zhu S, Pang F F, Huang S J, et al. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD[J]. Optics Express, 2015, 23(11): 13880-13888.

[10] Shao M, Qiao X G, Fu H W, et al. An in-fiber Mach-Zehnder interferometer based on arc-induced tapers for high sensitivity humidity sensing[J]. IEEE Sensors Journal, 2013, 13(5): 2026-2031.

[11] Harith Z, Irawati N, Rafaie A H, et al. Tapered plastic optical fiber coated with Al-doped ZnO nanostructures for detecting relative humidity[J]. IEEE Sensors Journal, 2015, 15(2): 845-849.

[12] 傅海威, 许士超, 乔学光, 等. 基于温度变化的涂覆型熔锥光纤传输特性[J]. 中国激光, 2012, 39(3): 0305001.

    Fu Haiwei, Xu Shichao, Qiao Xueguang, et al. Coated and tapered fiber transmission characteristics based on temperature variation[J]. Chinese J Lasers, 2012, 39(3): 0305001.

[13] Coviello G, Finazzi V, Villatoro J, et al. Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ℃[J]. Optics Express, 2009, 17(24): 21551-21559.

[14] Xu Y P, Lu P, Qin Z G, et al. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer[J]. Optics Express, 2013, 21(3): 3031-3042.

[15] Xu B, Li J Q, Pan Y Y, et al. Temperature-insensitive fiber cantilever vibration sensor based on a fiber-to-fiber structure[J]. Chinese Optics Letters, 2014, 12(2): 020604.

[16] 韩屏, 谢涌泉, 刘阳. 分布式全光纤微振动传感器研究[J]. 中国激光, 2014, 41(3): 0305004.

    Han Ping, Xie Yongquan, Liu Yang. Research of all-fiber micro-vibration multiplexing sensors[J]. Chinese J Lasers, 2014, 41(3): 0305004.

[17] Saffari P, Allsop T, Adebayo A, et al. Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures[J]. Optics Letters, 2014, 39(12): 3508-3511.

[18] Smietana M, Brabant D, Bock W J, et al. Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber[J]. Journal of Lightwave Technology, 2012, 30(8): 1185-1189.

[19] 侯建平, 宁韬, 盖双龙, 等. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析[J]. 物理学报, 2010, 59(7): 4732-4737.

    Hou Jianping, Ning Tao, Gai Shuanglong, et al. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber[J]. Acta Physica Sinica, 2010, 59(7): 4732-4737.

[20] Dobb H, Kalli K, Webb D J. Temperature insensitive long period grating sensors in photonic crystal fiber[C]. SPIE, 2004, 5579: 66-79.

[21] 穆志勇. 基于光纤光栅的模间干涉仪传感特性研究[J]. 光通信技术, 2014, 38(7): 32-35.

    Mu Zhiyong. Research on sensing characteristics of modal interferometer instrument based on fiber grating[J]. Optical Communication Technology, 2014, 38(7): 32-35.

[22] 刘丰, 毕卫红, 郭璇. 椭圆芯保偏光纤模间干涉的研究[J]. 光电子·激光, 2008, 19(8): 1019-1022.

    Liu Feng, Bi Weihong, Guo Xuan. Research on modular interference of elliptical-core polarization maintenance fiber[J]. Journal of Optoelectronics·Laser, 2008, 19(8): 1019-1022.

[23] Liu Y, Wei L. Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers[J]. Applied Optics, 2007, 46(13): 2516-2519.

[24] Gong Y, Guo Y, Rao Y J, et al. Fiber-optic Fabry-Pérot sensor based on periodic focusing effect of graded-index multimode fibers[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1708-1710.

[25] Tafulo P A R, Jorge P A S, Santos J L, et al. Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement[J]. IEEE Sensors Journal, 2012, 12(1): 8-12.

[26] 赵娜, 傅海威, 邵敏, 等. 基于光纤粗锥型马赫-曾德尔干涉仪的高灵敏度温度传感器的研制[J]. 光谱学与光谱分析, 2014, 34(6): 1722-1726.

    Zhao Na, Fu Haiwei, Shao Min, et al. Research on high sensitivity temperature sensor based on Mach-Zehnder interferometer with waist-enlarged fiber bitapers[J]. Spectroscopy and Spectral Analysis, 2014, 34(6): 1722-1726.

[27] 黄泽铗, 李强, 徐雅芹, 等. 基于单模-多模-单模光纤模间干涉的温度传感特性研究[J]. 中国激光, 2013, 40(6): 0605001.

    Huang Zejia, Li Qiang, Xu Yaqin, et al. Research on temperature sensing characteristics based on modular interference of single-mode-multimode-single-mode fiber[J]. Chinese J Lasers, 2013, 40(6): 0605001.

[28] 傅海威, 闫旭, 邵敏, 等. 纤芯失配的光纤Mach-Zehnder折射率传感器[J]. 光学 精密工程, 2014, 22(9): 2285-2291.

    Fu Haiwei, Yan Xu, Shao Min, et al. Optical fiber core-mismatched Mach-Zehnder refractive sensor[J]. Optics and Precision Engineering, 2014, 22(9): 2285-2291.

[29] 付兴虎, 谢海洋, 朱洪彬, 等. 基于锥形光子晶体光纤马赫-曾德尔干涉的曲率传感器实验研究[J]. 光学学报, 2015, 35(5): 0506002.

    Fu Xinghu, Xie Haiyang, Zhu Hongbin, et al. Experimental research of curvature sensor based on tapered photonic crystal fiber Mach-Zehnder interferometer[J]. Acta Optica Sinica, 2015, 35(5): 0506002.

[30] 傅海威, 闫旭, 李辉栋, 等. 基于纤芯失配型马赫曾德尔光纤折射率和温度同时测量传感器的研究[J]. 光学学报, 2014, 34(11): 1106001.

    Fu Haiwei, Yan Xu, Li Huidong, et al. Study of fiber sensor for simultaneous measurement of refractive and temperature based on a core-mismatch Mach-Zehnder interferometer[J]. Acta Optica Sinica, 2014, 34(11): 1106001.

[31] Chen D, Hu G F, Chen L X. Pressure/temperature sensor based on a dual-core photonic crystal fiber[C]. Communications and Photonics Conference and Exhibition, 2011: 12784366.

[32] Yang S, Sun H, Yuan L T, et al. Refractive index and temperature sensor based on cladding-mode Bragg grating excited by abrupt taper interferometer[J]. Chinese Optics Letters, 2013, 11(12): 120604.

付兴虎, 杨传庆, 王思文, 文建湘, 董艳华, 付广伟, 毕卫红. 基于模间干涉的折射率/曲率不敏感型PbS光纤温度传感器[J]. 中国激光, 2016, 43(12): 1210002. Fu Xinghu, Yang Chuanqing, Wang Siwen, Wen Jianxiang, Dong Yanhua, Fu Guangwei, Bi Weihong. Refractive Index and Curvature Insensitive PbS Fiber Temperature Sensor Based on Inter-modal Interference Principle[J]. Chinese Journal of Lasers, 2016, 43(12): 1210002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!