光子学报, 2013, 42 (3): 363, 网络出版: 2013-03-05  

基于单边傅里叶变换的非马尔科夫自发辐射研究

Non-Markovian Spontaneous Emission Research Based on One-sided Fourier Transformation
作者单位
华南农业大学 理学院 应用物理系, 广州 510642
引用该论文

刘景锋, 李凌燕. 基于单边傅里叶变换的非马尔科夫自发辐射研究[J]. 光子学报, 2013, 42(3): 363.

LIU Jing-feng, LI Ling-yan. Non-Markovian Spontaneous Emission Research Based on One-sided Fourier Transformation[J]. ACTA PHOTONICA SINICA, 2013, 42(3): 363.

参考文献

[1] MIHI A, LOPEZ-ALCARAZ F J, MIGUEZ H. Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers[J]. Applied Physics Letters, 2006, 88(19): 193110.

[2] MIHI A, COLODRERO S, CALVO M, et al. Enhanced power conversion efficiency in solar cells coupled to photonic crystals[C]. SPIE, 2007, 6640: 664007.

[3] PARK Y, DROUARD E, DAIF E O, et al. Absorption enhancement using photonic crystals for silicon thin film solar cells[J]. Optics Express, 2009, 17(16): 14312-14321.

[4] KO D H, TUMBLESTON J R, ZHANG L, et al. Photonic crystal geometry for organic solar cells[J]. Nano Letters, 2009, 9(7): 2742-2746.

[5] COLODRERO S, MIHI A, ANTA J A, et al. Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2009, 113(4): 1150-1154.

[6] 鄢秋荣, 赵宝升, 刘永安, 等. 基于单光子脉冲时间随机性的光量子随机源[J]. 光学学报, 2012, 33(3): 0327001.

    YAN Qiu-rong, ZHAO Bao-sheng, LIU Yong-an, et.al. Optical quantum random number generator based on the time randomness of single-photon pulse[J]. Acta Optica Sinica, 2012, 33(3): 0327001.

[7] SANTORI C, FATTAL D, VUCKOVIC J, et al. Indistinguishable photons from a single-photon device[J]. Nature, 2002, 419(6907): 594-597.

[8] MICHLER P, KIRAZ A, BECHER C, et al. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500): 2282-2285.

[9] KELLER M, LANGE B, HAYASAKA K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system[J]. Nature, 2004, 431(7012): 1075-1078.

[10] CHANG W H, CHEN W Y, CHANG H S, et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities[J]. Physical Review Letters, 2006, 96(6): 117401.

[11] STRAUF S, STOLTZ N G, RAKHER M T, et al. High-frequency single-photon source with polarization control[J]. Nature Photonics, 2007, 1(12): 704-708.

[12] TOISHI M, ENGLUND D, FARAON A, et al. High-brightness single photon source from a quantum dot in a directional-emission nanocavity[J]. Optics Express, 2009, 17(17): 14618-14626.

[13] CLAUDON J, BLEUSE J, MALIK N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire[J]. Nature Photonics, 2010, 4(3): 174-177.

[14] WIERER J J, DAVID A, MEGENS M M. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency[J]. Nature Photonics, 2009, 3(3): 163-169.

[15] PARK H G, KIM S H, KWON S H, et al. Electrically driven single-cell photonic crystal laser[J]. Science, 2004, 305(5689): 1444-1447.

[16] PURCELL E M. Spontaneous emission probabilities at radio frequencies [J]. Physical Review, 1946, 69(12): 681.

[17] WANG X H, WANG R, GU B Y, et al. Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps[J]. Physical Review Letters, 2002, 88(9): 093902.

[18] WANG X H, GU B Y, WANG R, et al. Decay kinetic properties of atoms in photonic crystals with absolute gaps[J]. Physical Review Letters, 2003, 91(11): 113904.

[19] WUBS M, SUTTORP L G, LAGENDIJK A. Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics[J]. Physical Review A, 2004, 70(5): 053823.

[20] COHEN T C, DUPONT R J, GRYNBERG G. Atom-photon interaction: basic process and applications[M]. New York: John Wiley & Sons, 1992: 165-170.

[21] WANG X H, KIVSHAR Y S, GU B Y. Giant lamb shift in photonic crystals[J]. Physical Review Letters, 2004, 93(7): 073901.

[22] 梁昆淼. 数学物理方法[M]. 3版. 北京: 高等教育出版社, 2002: 104-113.

[23] VATS N, JOHN S, BUSCH K. Theory of fluorescence in photonic crystals[J]. Physical Review A, 2002, 65(4): 043808.

[24] SPRIK R, TIGGELEN B A, LAGENDIJK A. Optical emission in periodic dielectrics[J]. Europhys Letters, 1996, 35(4): 265-270.

[25] LIU J F, JIANG H X, GAN Z S, et al. Lifetime distribution of spontaneous emission from emitter(s) in three-dimensional woodpile photonic crystals[J]. Optics Express, 2011, 19(12): 11623-11630.

[26] LIU J F, JIANG H X, JIN C J, et al. Orientation-dependent local density of states in three-dimensional photonic crystals[J]. Physical Review A, 2012, 85(1): 015802.

[27] MARLAN O S, ZUBAIRY M S. Quantum optics[M]. Cambridge: Cambridge University Press, 1997: 206-210.

[28] NOVOTNY L, HECHT B. Principles of nano optics[M]. Cambridge: Cambridge University Press, 2006: 167-208.

[29] VOGEL W, WELSCH D G, WALLENTOWITZ S. Quantum optics: an introduction [M]. 3rd ed. NEW YORK: JOHN WILEY & SONS, 2005: 25-68.

[30] JAYNES E T, CUMMINGS F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser[J]. Proceedings of the IEEE, 1963, 51(1): 89-109.

[31] GREEY C C, KNIGHT P L. Introductory quantum optics[M]. Cambridge: Cambidge Univesity Press, 2005: 74-99.

[32] GERARD J M, GAYRAL B. Strong purcell effect for inas quantum boxes in three-dimensional solid-state microcavities[J]. Journal of Lightwave Technology, 1999, 17(11): 2089-2095.

[33] ENGLUND D, FATTAL D, WAKS E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal[J]. Physical Review Letters, 2005, 95(1): 013904.

[34] GéRARD J M, SERMAGE B, GAYRAL B, et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity[J]. Physical Review Letters, 1998, 81(5): 1110.

[35] JIANG X, JIANG Y, WANG Y, et al. Non-Markovian decay of a three-level Λ-type atom in a photonic-band-gap reservoir[J]. Physical Review A, 2006, 73(3): 033802.

[36] LAMBROPOULOS P, NIKOLOPOULOS G M, NIELSEN T R, et al. Fundamental quantum optics in structured reservoirs[J]. Reports on Progress in Physics, 2000, 63(4): 455-503.

刘景锋, 李凌燕. 基于单边傅里叶变换的非马尔科夫自发辐射研究[J]. 光子学报, 2013, 42(3): 363. LIU Jing-feng, LI Ling-yan. Non-Markovian Spontaneous Emission Research Based on One-sided Fourier Transformation[J]. ACTA PHOTONICA SINICA, 2013, 42(3): 363.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!