光子学报, 2013, 42 (3): 363, 网络出版: 2013-03-05  

基于单边傅里叶变换的非马尔科夫自发辐射研究

Non-Markovian Spontaneous Emission Research Based on One-sided Fourier Transformation
作者单位
华南农业大学 理学院 应用物理系, 广州 510642
摘要
基于单边傅里叶变换, 本文提出一种研究辐射子的自发衰减动力学演化的普适方法.利用该方法研究了辐射子处于均匀介质、理想微腔和泄露微腔中的自发辐射动力学演化问题, 最后并把这种方法用于处理光子带隙材料中的辐射动力学演化问题.结果表明: 辐射子的自发辐射动力学特性由局域态密度决定, 可以通过调控辐射子周围的局域态密度来调控辐射子的自发辐射特性, 为实现新型的光电子器件提供了理论基础.该方法不仅适用于马尔科夫热库的情况也适用于非马尔科夫热库的情况.
Abstract
Based on one-sided Fourier transformation, a general method is presented to research the spontaneous decay dynamics of an emitter in homogeneous media, non-leaky cavity, leaky cavity and photonic band gap material. It is found that the spontaneous decay properties of the emitters are strongly dependent on the local density of states. The spontaneous emission properties of the emitters can be manipulated through engineering the local density of stats and the high-performance optoelectronic device and quantum information processing device are obtained. This method can be used in Markovian or non-Markovian bath-reservoir environments.
参考文献

[1] MIHI A, LOPEZ-ALCARAZ F J, MIGUEZ H. Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers[J]. Applied Physics Letters, 2006, 88(19): 193110.

[2] MIHI A, COLODRERO S, CALVO M, et al. Enhanced power conversion efficiency in solar cells coupled to photonic crystals[C]. SPIE, 2007, 6640: 664007.

[3] PARK Y, DROUARD E, DAIF E O, et al. Absorption enhancement using photonic crystals for silicon thin film solar cells[J]. Optics Express, 2009, 17(16): 14312-14321.

[4] KO D H, TUMBLESTON J R, ZHANG L, et al. Photonic crystal geometry for organic solar cells[J]. Nano Letters, 2009, 9(7): 2742-2746.

[5] COLODRERO S, MIHI A, ANTA J A, et al. Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2009, 113(4): 1150-1154.

[6] 鄢秋荣, 赵宝升, 刘永安, 等. 基于单光子脉冲时间随机性的光量子随机源[J]. 光学学报, 2012, 33(3): 0327001.

    YAN Qiu-rong, ZHAO Bao-sheng, LIU Yong-an, et.al. Optical quantum random number generator based on the time randomness of single-photon pulse[J]. Acta Optica Sinica, 2012, 33(3): 0327001.

[7] SANTORI C, FATTAL D, VUCKOVIC J, et al. Indistinguishable photons from a single-photon device[J]. Nature, 2002, 419(6907): 594-597.

[8] MICHLER P, KIRAZ A, BECHER C, et al. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500): 2282-2285.

[9] KELLER M, LANGE B, HAYASAKA K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system[J]. Nature, 2004, 431(7012): 1075-1078.

[10] CHANG W H, CHEN W Y, CHANG H S, et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities[J]. Physical Review Letters, 2006, 96(6): 117401.

[11] STRAUF S, STOLTZ N G, RAKHER M T, et al. High-frequency single-photon source with polarization control[J]. Nature Photonics, 2007, 1(12): 704-708.

[12] TOISHI M, ENGLUND D, FARAON A, et al. High-brightness single photon source from a quantum dot in a directional-emission nanocavity[J]. Optics Express, 2009, 17(17): 14618-14626.

[13] CLAUDON J, BLEUSE J, MALIK N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire[J]. Nature Photonics, 2010, 4(3): 174-177.

[14] WIERER J J, DAVID A, MEGENS M M. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency[J]. Nature Photonics, 2009, 3(3): 163-169.

[15] PARK H G, KIM S H, KWON S H, et al. Electrically driven single-cell photonic crystal laser[J]. Science, 2004, 305(5689): 1444-1447.

[16] PURCELL E M. Spontaneous emission probabilities at radio frequencies [J]. Physical Review, 1946, 69(12): 681.

[17] WANG X H, WANG R, GU B Y, et al. Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps[J]. Physical Review Letters, 2002, 88(9): 093902.

[18] WANG X H, GU B Y, WANG R, et al. Decay kinetic properties of atoms in photonic crystals with absolute gaps[J]. Physical Review Letters, 2003, 91(11): 113904.

[19] WUBS M, SUTTORP L G, LAGENDIJK A. Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics[J]. Physical Review A, 2004, 70(5): 053823.

[20] COHEN T C, DUPONT R J, GRYNBERG G. Atom-photon interaction: basic process and applications[M]. New York: John Wiley & Sons, 1992: 165-170.

[21] WANG X H, KIVSHAR Y S, GU B Y. Giant lamb shift in photonic crystals[J]. Physical Review Letters, 2004, 93(7): 073901.

[22] 梁昆淼. 数学物理方法[M]. 3版. 北京: 高等教育出版社, 2002: 104-113.

[23] VATS N, JOHN S, BUSCH K. Theory of fluorescence in photonic crystals[J]. Physical Review A, 2002, 65(4): 043808.

[24] SPRIK R, TIGGELEN B A, LAGENDIJK A. Optical emission in periodic dielectrics[J]. Europhys Letters, 1996, 35(4): 265-270.

[25] LIU J F, JIANG H X, GAN Z S, et al. Lifetime distribution of spontaneous emission from emitter(s) in three-dimensional woodpile photonic crystals[J]. Optics Express, 2011, 19(12): 11623-11630.

[26] LIU J F, JIANG H X, JIN C J, et al. Orientation-dependent local density of states in three-dimensional photonic crystals[J]. Physical Review A, 2012, 85(1): 015802.

[27] MARLAN O S, ZUBAIRY M S. Quantum optics[M]. Cambridge: Cambridge University Press, 1997: 206-210.

[28] NOVOTNY L, HECHT B. Principles of nano optics[M]. Cambridge: Cambridge University Press, 2006: 167-208.

[29] VOGEL W, WELSCH D G, WALLENTOWITZ S. Quantum optics: an introduction [M]. 3rd ed. NEW YORK: JOHN WILEY & SONS, 2005: 25-68.

[30] JAYNES E T, CUMMINGS F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser[J]. Proceedings of the IEEE, 1963, 51(1): 89-109.

[31] GREEY C C, KNIGHT P L. Introductory quantum optics[M]. Cambridge: Cambidge Univesity Press, 2005: 74-99.

[32] GERARD J M, GAYRAL B. Strong purcell effect for inas quantum boxes in three-dimensional solid-state microcavities[J]. Journal of Lightwave Technology, 1999, 17(11): 2089-2095.

[33] ENGLUND D, FATTAL D, WAKS E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal[J]. Physical Review Letters, 2005, 95(1): 013904.

[34] GéRARD J M, SERMAGE B, GAYRAL B, et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity[J]. Physical Review Letters, 1998, 81(5): 1110.

[35] JIANG X, JIANG Y, WANG Y, et al. Non-Markovian decay of a three-level Λ-type atom in a photonic-band-gap reservoir[J]. Physical Review A, 2006, 73(3): 033802.

[36] LAMBROPOULOS P, NIKOLOPOULOS G M, NIELSEN T R, et al. Fundamental quantum optics in structured reservoirs[J]. Reports on Progress in Physics, 2000, 63(4): 455-503.

刘景锋, 李凌燕. 基于单边傅里叶变换的非马尔科夫自发辐射研究[J]. 光子学报, 2013, 42(3): 363. LIU Jing-feng, LI Ling-yan. Non-Markovian Spontaneous Emission Research Based on One-sided Fourier Transformation[J]. ACTA PHOTONICA SINICA, 2013, 42(3): 363.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!