Photonics Research, 2019, 7 (2): 02000121, Published Online: Feb. 19, 2019   

Vertical-cavity surface-emitting lasers for data communication and sensing Download: 956次

Author Affiliations
1 Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4 Institute of Solid State Physics and Center of Nanophotonics, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
5 Bimberg Chinese-German Center for Green Photonics of the Chinese Academy of Sciences at CIOMP, Changchun 130033, China
Copy Citation Text

Anjin Liu, Philip Wolf, James A. Lott, Dieter Bimberg. Vertical-cavity surface-emitting lasers for data communication and sensing[J]. Photonics Research, 2019, 7(2): 02000121.

References

[1] I. Melngailis. Longitudinal injection plasma laser of InSb. Appl. Phys. Lett., 1965, 6: 59-60.

[2] H. Soda, K. Iga, C. Kitahara, Y. Suematsu. GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys., 1979, 18: 2329-2330.

[3] J. P. van der Ziel, M. Ilegems. Multilayer GaAs-A10.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy. Appl. Opt., 1975, 14: 2627-2630.

[4] M. Ogura, T. Hata, N. J. Kawai, T. Yao. GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode. Jpn. J. Appl. Phys., 1983, 22: L112-L114.

[5] M. Ogura, T. Hata, T. Yao. Distributed feedback surface emitting laser diode with multilayered heterostructure. Jpn. J. Appl. Phys., 1984, 23: L512-L514.

[6] M. Ogura, T. Yao. Surface emitting laser diode with AlxGa1-xAs/GaAs multilayered heterostructure. J. Vac. Sci. Technol. B, 1985, 3: 784-787.

[7] K. Iga, S. Kinoshita, F. Koyama. Microcavity GaAlAs/GaAs surface-emitting laser with lth = 6  mA. Electron. Lett., 1987, 23: 134-136.

[8] T. Sakaguchi, F. Koyama, K. Iga. Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector. Electron. Lett., 1988, 24: 928-929.

[9] P. L. Gourley, T. J. Drummond. Visible, room temperature, surface emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells. Appl. Phys. Lett., 1987, 50: 1225-1227.

[10] J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, L. T. Florez. Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electron. Lett., 1989, 25: 1123-1134.

[11] Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez. Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes. Electron. Lett., 1989, 25: 1377-1378.

[12] Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, J. V. Hove. Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85  μm. Electron. Lett., 1990, 26: 710-711.

[13] R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, L. A. Coldren. Low threshold planarized vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett., 1990, 2: 234-236.

[14] J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, N. El-Zein. Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices. Appl. Phys. Lett., 1990, 57: 2844-2846.

[15] D. L. Huffaker, D. G. Deppe, K. Kumar, T. J. Rogers. Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl. Phys. Lett., 1994, 65: 97-99.

[16] K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull. Advances in selective wet oxidation of AlGaAs alloys. IEEE J. Sel. Top. Quantum Electron., 1997, 3: 916-926.

[17] M. Dallesasse, N. Holonyak. Oxidation of Al-bearing III-V materials: a review of key progress. J. Appl. Phys., 2013, 113: 051101.

[18] F. Koyama. Recent advances of VCSEL photonics. J. Lightwave Technol., 2006, 24: 4502-4513.

[19] LiH.WolfP.MoserP.LarischG.LottJ. A.BimbergD., “Vertical-cavity surface-emitting lasers for optical interconnects,” SPIE Newsroom (2014), DOI: 10.1117/2.1201411.005689.

[20] A. Larsson. Advances in VCSELs for communication and sensing. IEEE J. Sel. Top. Quantum Electron., 2011, 17: 1552-1567.

[21] MichalzikR., VCSELs - Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, Springer Series in Optical Sciences (Springer, 2013), Vol. 166.

[22] J. A. Tatum. VCSEL proliferation. Proc. SPIE, 2014, 6484: 648403.

[23] M. Grabherr. New applications boost VCSEL quantities: recent developments at Philips. Proc. SPIE, 2015, 9381: 938102.

[24] WilmsenC.TemkinH.ColdrenL. A., eds., Vertical Cavity Surface Emitting Lasers: Design, Fabrication, Characterization and Applications (Cambridge University, 1999).

[25] LiH. E.IgaK., Vertical-Cavity Surface-Emitting Laser Devices, Springer Series in Photonics (Springer, 2003), Vol. 6.

[26] J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, C. Ghosh. High-efficiency VCSEL arrays for illumination and sensing in consumer applications. Proc. SPIE, 2016, 9766: 97660D.

[27] N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, H. Nakayama. VCSEL array-based light exposure system for laser printing. Proc. SPIE, 2008, 6908: 69080H.

[28] D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, C. Ghosh. Progress on high-power 808  nm VCSELs and applications. Proc. SPIE, 2007, 10122: 1012206.

[29] H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, U. Weichmann. Integrated high power VCSEL systems. Proc. SPIE, 2016, 9733: 97330V.

[30] M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, M.-C. Amann. 1550-nm high-speed short-cavity VCSELs. IEEE J. Sel. Top. Quantum Electron., 2011, 17: 1158-1166.

[31] S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, M.-C. Amann. Single-mode high-speed 1.5-μm VCSELs. J. Lightwave Technol., 2017, 35: 727-733.

[32] A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, E. Kapon. 25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs. Opt. Express, 2016, 24: 16329-16335.

[33] T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, S.-C. Wang. CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Appl. Phys. Lett., 2008, 92: 141102.

[34] ColdrenL. A.CorzineS. W.MašanovićM. L., Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).

[35] I. Suemune. Theoretical study of differential gain in strained quantum well structures. IEEE J. Quantum Electron., 1991, 27: 1149-1159.

[36] P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, A. Larsson. High-speed, low-current-density 850  nm VCSELs. IEEE J. Sel. Top. Quantum Electron., 2009, 15: 694-703.

[37] S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, A. Joel. Active region design for high-speed 850-nm VCSELs. IEEE J. Quantum Electron., 2010, 46: 506-512.

[38] P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson. Impact of photon lifetime on high-speed VCSEL performance. IEEE J. Sel. Top. Quantum Electron., 2011, 17: 1603-1613.

[39] G. Larisch, P. Moser, J. A. Lott, D. Bimberg. Impact of photon lifetime on the temperature stability of 50  Gb/s 980  nm VCSELs. IEEE Photon. Technol. Lett., 2016, 28: 2327-2330.

[40] HofmannW.MoserP.WolfP.MutigA.KrohM.BimbergD., “44  Gb/s VCSEL for optical interconnects,” in Optical Fiber Communication Conference (2011), paper PDPC5.

[41] P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, D. Bimberg. 85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers. Appl. Phys. Lett., 2012, 100: 081103.

[42] H. W. Then, C. H. Wu, M. Feng, N. Holonyak. Microwave characterization of Purcell enhancement in a microcavity laser. Appl. Phys. Lett., 2010, 96: 131107.

[43] P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, G. A. Vawter. Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD. IEEE Photon. Technol. Lett., 1991, 3: 591-593.

[44] M. A. Afromowitz. Thermal conductivity of Ga1-xAlxAs alloys. J. Appl. Phys., 1973, 44: 1292-1294.

[45] LascolaK.YuenW.Chang-HasnainC., “Structural dependence of the thermal resistance of vertical cavity surface emitting lasers,” in IEEE/LEOS Summer Topical Meeting (1997), pp. 7980.

[46] A. N. AL-Omari, M. S. Alias, A. Ababneh, K. L. Lear. Improved performance of top-emitting oxide-confined polyimide-planarized 980  nm VCSELs with copper-plated heat sinks. J. Phys. D, 2012, 45: 505101.

[47] R. Pu, C. W. Wilmsen, K. M. Geib, K. D. Choquette. Thermal resistance of VCSEL’s bonded to integrated circuits. IEEE Photon. Technol. Lett., 1999, 11: 1554-1556.

[48] E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, M. R. Pinto. Elimination of heterojunction band discontinuities by modulation doping. Appl. Phys. Lett., 1992, 60: 466-468.

[49] A. N. AL-Omari, K. L. Lear. Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth. IEEE Photon. Technol. Lett., 2004, 16: 969-971.

[50] Y.-C. Chang, C. S. Wang, L. A. Coldren. High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation. Electron. Lett., 2007, 43: 1022-1023.

[51] AzuchiM.JikutaniN.AmiM.KondoT.KoyamaF., “Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth,” in 5th Pacific Rim Conference on Lasers and Electro-Optics (2003), Vol. 1, p. 163.

[52] Y.-C. Chang, C. S. Wang, L. A. Johansson, L. A. Coldren. High-efficiency, high-speed VCSELs with deep oxidation layers. Electron. Lett., 2006, 42: 1281-1282.

[53] N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, M. Tsuji. 25  Gbit/s operation of InGaAs-based VCSELs. Electron. Lett., 2006, 42: 975-976.

[54] KuchtaD. M.PepeljugoskiP.KwarkY., “VCSEL modulation at 20  Gb/s over 200  m of multimode fiber using a 3.3  V SiGe laser driver IC,” in Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo (2001), pp. 4950.

[55] JohnsonR. H.KuchtaD. M., “30  Gb/s directly modulated 850  nm datacom VCSELs,” in Conference on Lasers and Electro-Optics (2008), paper CPDB2.

[56] P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, A. Joel. 32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL. Electron. Lett., 2009, 45: 366-368.

[57] P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, A. Joel. 40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL. Electron. Lett., 2010, 46: 1014-1016.

[58] P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, A. Joel. High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s. Electron. Lett., 2012, 48: 1145-1147.

[59] P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, A. Larsson. High-speed 850  nm VCSELs operating error free up to 57  Gbit/s. Electron. Lett., 2013, 49: 1021-1023.

[60] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, A. Joel. 30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s. Electron. Lett., 2015, 51: 1096-1098.

[61] A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, D. Bimberg. Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers. Appl. Phys. Lett., 2009, 95: 131101.

[62] S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, D. Bimberg. Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s. Electron. Lett., 2009, 45: 501-502.

[63] F. Tan, M.-K. Wu, M. Liu, M. Feng, N. Holonyak. 850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission. IEEE Photon. Technol. Lett., 2014, 26: 289-292.

[64] LiuM.WangC. Y.FengM.HolonyakN.Jr., “850  nm oxide-confined VCSELs with 50  Gb/s error-free transmission operating up to 85°C,” in Conference on Lasers and Electro-Optics (2016), paper SF1L.6.

[65] J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, Y.-J. Yang. Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/s operations. IEEE J. Sel. Top. Quantum Electron., 2013, 19: 7900208.

[66] K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, J.-W. Shi. Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation. IEEE J. Sel. Top. Quantum Electron., 2015, 21: 1701510.

[67] Y.-C. Chang, L. A. Coldren. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron., 2009, 15: 704-715.

[68] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, D. Bimberg. Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C. Electron. Lett., 2014, 50: 1369-1371.

[69] HaghighiN.LarischG.RosalesR.ZornM.LottJ. A., “35  GHz bandwidth with directly current modulated 980  nm oxide aperture single cavity VCSELs,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper WD4.

[70] E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, M. R. Tan. 1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate. Electron. Lett., 2017, 53: 869-871.

[71] K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, M. Tsuji. 1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett., 2007, 19: 1883-1885.

[72] AnanT.SuzukiN.YashikiK.FukatsuK.HatakeyamaH.AkagawaT.TokutomeK.TsujiM., “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.

[73] D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, A. Larsson. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photon. Technol. Lett., 2015, 27: 577-580.

[74] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson. High-speed VCSELs with strong confinement of optical fields and carriers. J. Lightwave Technol., 2015, 34: 269-277.

[75] KuchtaD. M.RylyakovA. V.SchowC. L.ProeselJ. E.BaksC.KocotC.GrahamL.JohnsonR.LandryG.ShawE.MacInnesA.TatumJ., “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

[76] KuchtaD. M.SchowC. L.RylyakovA. V.ProeselJ. E.DoanyF. E.BaksC.Hamel-BissellB. H.KocotC.GrahamL.JohnsonR.LandryG.ShawE.MacInnesA.TatumJ., “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

[77] LiuM.WangC. Y.FengM.HolonyakN.Jr., “50  Gb/s error-free data transmission of 850  nm oxide-confined VCSELs,” in Optical Fiber Communication Conference (2016), paper Tu3D.2.

[78] H. Nasu. Short-reach optical interconnects employing high-density parallel-optical modules. IEEE J. Sel. Top. Quantum Electron., 2010, 16: 1337-1346.

[79] P. Wolf, P. Moser, G. Larisch, W. Hofmann, D. Bimberg. High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects. IEEE J. Sel. Top. Quantum Electron., 2013, 19: 1701207.

[80] P. Moser, J. A. Lott, G. Larisch, D. Bimberg. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs. J. Lightwave Technol., 2015, 33: 825-831.

[81] R. Rosales, M. Zorn, J. A. Lott. 30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs. IEEE Photon. Technol. Lett., 2017, 29: 2107-2110.

[82] N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, J. A. Lott. Simplicity VCSELs. Proc. SPIE, 2018, 10552: 105520N.

[83] SuzukiN.HatakeyamaH.FukatsuK.AnanT.YashikiK.TsujiM., “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Optical Fiber Communication Conference (2006), paper OFA4.

[84] D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, J. Tatum. Techno-economic comparison of silicon photonics and multimode VCSELs. J. Lightwave Technol., 2016, 34: 233-242.

[85] LiuH.LamC. F.JohnsonC., “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in IEEE Symposium on High Performance Interconnects (2010), pp. 113116.

[86] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, D. Bimberg. 85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs. IEEE Photon. Technol. Lett., 2013, 25: 1638-1641.

[87] R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson. 20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL. Electron. Lett., 2014, 50: 40-42.

[88] H. Dalir, F. Koyama. 29  GHz directly modulated 980  nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity. Appl. Phys. Lett., 2013, 103: 091109.

[89] S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, K. D. Choquette. 37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays. IEEE Photon. Technol. Lett., 2015, 27: 415-418.

[90] B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, Y. H. Lee. Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers. Appl. Phys. Lett., 1992, 60: 683-685.

[91] L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, J. A. Tatum. The next generation of high speed VCSELs at Finisar. Proc. SPIE, 2012, 8276: 827602.

[92] C. Xie, N. Li, S. Huang, C. Liu, L. Wang, K. P. Jackson. The next generation high data rate VCSEL development at SEDU. Proc. SPIE, 2013, 8639: 863903.

[93] P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, A. Joel. High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C. IEEE Photon. Technol. Lett., 2013, 25: 768-771.

[94] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, A. Larsson. A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C. J. Lightwave Technol., 2015, 33: 802-810.

[95] N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, N. N. Ledentsov. Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C. Proc. SPIE, 2018, 10552: 105520P.

[96] P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, D. Bimberg. 81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects. Appl. Phys. Lett., 2011, 98: 231106.

[97] A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, D. Bimberg. 120°C 20  Gbit/s operation of 980  nm VCSEL. Electron. Lett., 2008, 44: 1305-1306.

[98] H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, D. Bimberg. Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C. Electron. Lett., 2014, 50: 103-105.

[99] H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, D. Bimberg. Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat. IEEE Photon. Technol. Lett., 2014, 26: 2349-2352.

[100] D. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 2009, 97: 1166-1185.

[101] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, D. Bimberg. 56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s. Electron. Lett., 2012, 48: 1292-1294.

[102] F. Tan, C. H. Wu, M. Feng, N. Holonyak. Energy efficient microcavity lasers with 20 and 40  Gb/s data transmission. Appl. Phys. Lett., 2011, 98: 191107.

[103] C. H. Wu, F. Tan, M. Feng, N. Holonyak. The effect of mode spacing on the speed of quantum-well microcavity lasers. Appl. Phys. Lett., 2010, 97: 091103.

[104] P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, D. Bimberg. Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat. Electron. Lett., 2013, 49: 666-667.

[105] ShiJ.-W.WengW.-C.KuoF.-M.ChyiJ.-I.PinchesS.GeenM.JoelA., “Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,” in Optical Fiber Communication Conference (2011), paper OthG2.

[106] H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, D. Bimberg. Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects. IEEE J. Sel. Top. Quantum Electron., 2015, 21: 1700409.

[107] S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, A. Kasukawa. Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection. IEEE J. Sel. Top. Quantum Electron., 2011, 17: 1614-1620.

[108] T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, A. Kasukawa. 1060  nm 28-Gbps VCSEL developed at Furukawa. Proc. SPIE, 2014, 9001: 900104.

[109] LavrencikJ.VarugheseS.ThomasV. A.LandryG.SunY.ShubochkinR.BalemarthyK.TatumJ.RalphS. E., “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

[110] LavrencikJ.VarugheseS.ThomasV. A.LandryG.SunY.ShubochkinR.BalemarthyK.TatumJ.RalphS. E., “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

[111] P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, D. Bimberg. Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects. ACS Photon., 2017, 4: 2018-2024.

[112] K. Szczerba, T. Lengyel, M. Karlsson, P. A. Andrekson, A. Larsson. 94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization. IEEE Photon. Technol. Lett., 2016, 28: 2519-2521.

[113] MotaghiannezamS. M. R.LyubomirskyI.DaghighianH.KocotC.GrayT.TatumJ.Amezcua-CorreaA.Bigot-AstrucM.MolinD.AchtenF.SillardP., “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

[114] KolesarP., IEEE 802.3 50G & NGOATH Study Groups, “Wideband MMF standardization and S-WDM technology,” 2016, .

[115] T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, C. Neumeyr. Optical interconnects based on VCSELs and low-loss silicon photonics. Proc. SPIE, 2018, 10538: 1053816.

[116] ShenP.-K.ChenC.-T.ChangC.-H.ChiuC.-Y.ChangC.-C.LanH.-C.LeeY.-C.WuM.-L., “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.

[117] Y. W. Xu, A. Michael, C. Y. Kwok. Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on <100> silicon. Proc. SPIE, 2008, 6800: 68001W.

[118] SantosR.D’AgostinoD.SoaresF. M.Rabbani HaghighiH.SmitM. K.LeijtensX. J. M., “Fabrication and characterization of a wet-etched InP-based vertical coupling mirror,” in 18th Annual Symposium of the IEEE Photonics Benelux (2013), pp. 179182.

[119] Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, N. Keil. Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control. IET Optoelectron., 2011, 5: 226-232.

[120] D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, P. S. Guilfoyle. VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings. Electron. Lett., 2004, 40: 1064-1065.

[121] J. Witzens, A. Scherer, G. Pickrell, D. Louderback, P. Guilfoyle. Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides. Appl. Phys. Lett., 2005, 86: 101105.

[122] K. S. Kaur, A. Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, G. Van Steenberge. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms. Opt. Express, 2015, 23: 28264-28270.

[123] H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, P. O’Brien. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit. Opt. Express, 2016, 24: 16258-16266.

[124] H. Li, X. Ma, D. Yuan, Z. Zhang, E. Li, C. Tang. Heterogeneous integration of a III-V VCSEL light source for optical fiber sensing. Opt. Lett., 2016, 41: 4158-4161.

[125] Y. Yang, G. Djogo, M. Haque, P. R. Herman, J. K. S. Poon. Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling. Opt. Express, 2017, 25: 5758-5771.

[126] N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, C. Koos. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express, 2012, 20: 17667-17677.

[127] M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, C. Koos. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 2018, 5: 876-883.

[128] G. Giuliani, M. Norgia, S. Donati, T. Bosch. Laser diode self-mixing technique for sensing applications. J. Opt. A, 2002, 4: S283-S294.

[129] M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, G. Mimnagh. A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing. Meas. Sci. Technol., 2002, 13: 2001-2006.

[130] A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, J. Pankert. VCSEL-based miniature laser-Doppler interferometer. Proc. SPIE, 2008, 6908: 69080I.

[131] D. Wiedenmann, M. Grabherr, R. Jäger, R. King. High volume production of single-mode VCSELs. Proc. SPIE, 2006, 6132: 613202.

[132] M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, C. Wimmer. Volume production of polarization controlled single-mode VCSELs. Proc. SPIE, 2008, 6908: 690803.

[133] M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, M.-C. Amann. Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating. IEEE Photon. Technol. Lett., 2010, 22: 15-17.

[134] P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, R. Michalzik. Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study. IEEE J. Sel. Top. Quantum Electron., 2005, 11: 107-116.

[135] D.-S. Song, Y.-J. Lee, H.-W. Choi, Y.-H. Lee. Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers. Appl. Phys. Lett., 2003, 82: 3182-3184.

[136] K.-H. Lee, J.-H. Baek, I.-K. Hwang, Y.-H. Lee, G.-H. Lee, J.-H. Ser, H.-D. Kim, H.-E. Shin. Square-lattice photonic-crystal vertical-cavity surface-emitting lasers. Opt. Express, 2004, 12: 4136-4143.

[137] P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, K. J. Ebeling. Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory. IEEE J. Sel. Top. Quantum Electron., 2003, 9: 1394-1404.

[138] T. Ohtoshi, T. Kuroda, A. Niwa, S. Tsuji. Dependence of optical gain in crystal orientation in surface-emitting lasers with strained quantum wells. Appl. Phys. Lett., 1994, 65: 1886-1887.

[139] K. Tateno, Y. Ohiso, C. Amano, A. Wakatsuki, T. Kurokawa. Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition. Appl. Phys. Lett., 1997, 70: 3395-3397.

[140] O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, C. Amano. An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability. IEEE Photon. Technol. Lett., 2000, 12: 942-944.

[141] K. D. Choquette, R. E. Leibenguth. Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries. IEEE Photon. Technol. Lett., 1994, 6: 40-42.

[142] B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling. High-performance oxide-confined GaAs VCSEL’s. IEEE J. Sel. Top. Quantum Electron., 1997, 3: 409-415.

[143] P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, M. R. T. Tan. Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers. Electron. Lett., 1997, 33: 1315-1317.

[144] H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, A. van der Lee. VCSEL based sensors for distance and velocity. Proc. SPIE, 2016, 9766: 97660A.

[145] L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, J. A. Tatum. High power VCSEL arrays for consumer electronics. Proc. SPIE, 2015, 9381: 93810A.

[146] .

[147] G. Berkovic, E. Shafir. Optical methods for distance and displacement measurements. Adv. Opt. Photon., 2012, 4: 441-471.

[148] M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, M. Rioux. Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng., 2001, 40: 10-19.

[149] H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, A. Weigl. VCSELs in short-pulse operation for time-of-flight applications. Proc. SPIE, 2018, 10552: 105520G.

[150] .

[151] R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, G.-J. Ulbrich. Imaging distance measurements using TOF lidar. J. Opt., 1998, 29: 188-193.

[152] M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, R. F. Carson. Low-divergence high-power VCSEL arrays for lidar application. Proc. SPIE, 2018, 10552: 105520E.

[153] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photon., 2011, 3: 128-160.

[154] P. Qiao, W. Yang, C. J. Chang-Hasnain. Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals. Adv. Opt. Photon., 2018, 10: 180-245.

[155] W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, S. Fan. Progress in 2D photonic crystal Fano resonance photonics. Prog. Quantum Electron., 2014, 38: 1-74.

[156] C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, Y. Suzuki. Broad-band mirror (1.12–1.62  μm) using a subwavelength grating. IEEE Photon. Technol. Lett., 2004, 16: 1676-1678.

[157] S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, M. Strassner. Highly selective and compact tunable MOEMS photonic crystal Fabry–Perot filter. Opt. Express, 2006, 14: 3129-3137.

[158] R. Magnusson, M. Shokooh-Saremi. Physical basis for wideband resonant reflectors. Opt. Express, 2008, 16: 3456-3462.

[159] V. Karagodsky, F. G. Sedgwick, C. J. Chang-Hasnain. Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express, 2010, 18: 16973-16988.

[160] M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photonics, 2007, 1: 119-122.

[161] S. Boutami, B. Benbakir, J.-L. Leclercq, P. Viktorovitch. Compact and polarization controlled 1.55  μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror. Appl. Phys. Lett., 2007, 91: 071105.

[162] T. Ansbæk, I.-S. Chung, E. S. Semenova, K. Yvind. 1060-nm tunable monolithic high index contrast subwavelength grating VCSEL. IEEE Photon. Technol. Lett., 2013, 25: 365-367.

[163] S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, F. Koyama. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs. Jpn. J. Appl. Phys., 2014, 53: 090306.

[164] M. G. Moharam, T. K. Gaylord. Rigorous coupled-wave analysis of planar grating diffraction. J. Opt. Soc. Am., 1981, 71: 811-818.

[165] M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain. Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers. Appl. Phys. Lett., 2008, 92: 171108.

[166] A. Liu, W. Hofmann, D. Bimberg. Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs. Opt. Express, 2014, 22: 11804-11811.

[167] A. Liu, W. Hofmann, D. Bimberg. Integrated high-contrast-grating optical sensor using guided mode. IEEE J. Quantum Electron., 2015, 51: 6600108.

[168] LiuA.ZhengW.BimbergD., “Unidirectional transmission in finite-size high-contrast gratings,” in Asia Communications and Photonics Conference (2016), paper AF2A.52.

[169] D. Zhao, Z. Ma, W. Zhou. Field penetrations in photonic crystal Fano reflectors. Opt. Express, 2010, 18: 14152-14158.

[170] I.-S. Chung, J. Mørk. Speed enhancement in VCSELs employing grating mirrors. Proc. SPIE, 2013, 8633: 863308.

[171] S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets. First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s. IEEE Photon. Technol. Lett., 1998, 10: 1205-1207.

[172] R. Magnusson. Wideband reflectors with zero-contrast gratings. Opt. Lett., 2014, 39: 4337-4340.

[173] J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, H. Jeon. Polarization-dependent GaN surface grating reflector for short wavelength applications. Opt. Express, 2009, 17: 22535-22542.

[174] M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, T. Czyszanowski. Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror. Opt. Express, 2015, 23: 11674-11686.

[175] A. Liu, W. Zheng, D. Bimberg. Comparison between high- and zero-contrast gratings as VCSEL mirrors. Opt. Commun., 2017, 389: 35-41.

[176] W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, C. J. Chang-Hasnain. Long-wavelength high-contrast grating vertical-cavity surface-emitting laser. IEEE Photon. J., 2010, 2: 415-422.

[177] K. Li, Y. Rao, C. Chase, W. Yang, C. J. Chang-Hasnain. Monolithic high-contrast metastructure for beam-shaping VCSELs. Optica, 2018, 5: 10-13.

[178] P. Debernardi, R. Orta, T. Gründl, M.-C. Amann. 3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron., 2013, 49: 137-145.

[179] A. Liu, F. Fu, Y. Wang, B. Jiang, W. Zheng. Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure. Opt. Express, 2012, 20: 14991-15000.

[180] M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain. A nanoelectromechanical tunable laser. Nat. Photonics, 2008, 2: 180-184.

[181] Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, C. J. Chang-Hasnain. Long-wavelength VCSEL using high-contrast grating. IEEE J. Sel. Top. Quantum Electron., 2013, 19: 1701311.

[182] V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, C. J. Chang-Hasnain. Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Opt. Express, 2010, 18: 694-699.

[183] C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, P. Viktorovitch. III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing. IEEE Photon. Technol. Lett., 2013, 25: 1111-1113.

[184] A. Liu, P. Wolf, J.-H. Schulze, D. Bimberg. Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer. IEEE Photon. J., 2016, 8: 2700509.

[185] A. Liu, W. Zheng, D. Bimberg. VCSEL with finite-size high-contrast metastructure. Proc. SPIE, 2018, 10812: 1081202.

[186] E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, M. Tan. Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings. Opt. Express, 2016, 24: 1999-2005.

[187] L. Ferrier, P. Rojo Romeo, X. Letartre, E. Drouard, P. Viktorovitch. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide. Opt. Express, 2010, 18: 16162-16174.

[188] J. Ferrara, W. Yang, L. Zhu, P. Qiao, C. J. Chang-Hasnain. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Opt. Express, 2015, 23: 2512-2523.

[189] I.-S. Chung, J. Mørk. Silicon-photonics light source realized by III-V/Si-grating-mirror laser. Appl. Phys. Lett., 2010, 97: 151113.

[190] G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, I.-S. Chung. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide. Laser Photon. Rev., 2015, 9: L11-L15.

[191] G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, I.-S. Chung. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics. Sci. Rep., 2016, 6: 38801.

[192] S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, R. G. Baets. Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm. Laser Photon. Rev., 2018, 12: 1700206.

[193] GębskiM.CzyszanowskiT.LottJ. A., “Electrically-injected VCSELs with a composite monolithic high contrast grating and distributed Bragg reflector coupling mirror,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper TuP38.

[194] N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, J.-W. Shi. Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission. Opt. Express, 2018, 26: 445-453.

[195] G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, J. P. Turkiewicz. 54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF. Electron. Lett., 2016, 52: 633-635.

[196] A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, W. Zheng. Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser. Appl. Phys. Lett., 2009, 94: 191105.

[197] A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, W. H. Zheng. Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence. Laser Phys. Lett., 2010, 7: 213-217.

[198] A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, W.-H. Zheng. Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers. J. Phys. D, 2011, 44: 115104.

[199] R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, J. P. Turkiewicz. Effective 100  Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF. J. Lightwave Technol., 2017, 35: 423-429.

[200] I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, J. Chen. Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber. IEEE J. Sel. Top. Quantum Electron., 2015, 21: 444-452.

[201] H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, X. Cai. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica, 2015, 2: 547-552.

[202] S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, J. Moreland. A microfabricated atomic clock. Appl. Phys. Lett., 2004, 85: 1460-1462.

Anjin Liu, Philip Wolf, James A. Lott, Dieter Bimberg. Vertical-cavity surface-emitting lasers for data communication and sensing[J]. Photonics Research, 2019, 7(2): 02000121.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!