Photonics Research, 2019, 7 (2): 02000121, Published Online: Feb. 19, 2019   

Vertical-cavity surface-emitting lasers for data communication and sensing Download: 956次

Author Affiliations
1 Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4 Institute of Solid State Physics and Center of Nanophotonics, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
5 Bimberg Chinese-German Center for Green Photonics of the Chinese Academy of Sciences at CIOMP, Changchun 130033, China
Figures & Tables

Fig. 1. Schematic of a top-emitting VCSEL [19]. Inset is a scanning electron microscope image of the cross section of a high-speed VCSEL after it is cleaved.

下载图片 查看原文

Fig. 2. Small-signal model of a VCSEL with the high-frequency driving source.

下载图片 查看原文

Fig. 3. Schematic of representative optical modes (straight lines) and gain spectra (curves) behavior in a VCSEL as functions of increasing temperature. T0 denotes the typical room temperature.

下载图片 查看原文

Fig. 4. Simulated PAM4 and on–off keying (OOK) eye diagrams at 40 Gbps with a constant modulation bandwidth of 20 GHz.

下载图片 查看原文

Fig. 5. (a) End-to-end coupling between a VCSEL and a PIC based on an SOI platform [115]. A spot-size convertor in the PIC side is always adopted for a high coupling efficiency between the VCSEL and the silicon waveguide. (b) VCSEL coupled to a PIC by 45° micro-reflectors [116]. (c) Grating coupler for coupling between a VCSEL and a PIC [123]. (d) Photonic wire bond for integration for a surface-emitting laser and a PIC [127]. The laser can be a VCSEL or a distributed-feedback surface-emitting laser. PWB, photonic wire bond.

下载图片 查看原文

Fig. 6. Schematic of a tracking system based on SMI [129,130].

下载图片 查看原文

Fig. 7. Components of a face recognition module in a modern smartphone. (a) VCSELs for time-of-flight (ToF) proximity sensing and IR illumination. (b) VCSEL array for projection of randomly distributed dots to sense object distance information.

下载图片 查看原文

Fig. 8. (a) Schematic of focal plane scanning [148,151]. (b) Illustration of structured light [153].

下载图片 查看原文

Fig. 9. (a) Schematic of an HCG. The red arrows show the direction of wave incidence. The black arrows indicate the E-field direction in both TE and TM polarizations of incidence. (b) Double-mode solution exhibiting perfect intensity cancellation at the HCG output plane leading to 100% reflectivity [159].

下载图片 查看原文

Fig. 10. (a) Schematic of an HCG-VCSEL [160]. (b) HCG-VCSEL array for single-lobe, double-lobe, triple-lobe, “bow-tie,” “sugar cone,” and “doughnut” beam patterns [177]. (c) Schematic of a nanoelectromechanical tunable VCSEL using the highly reflective HCG as its top mirror, instead of conventional DBRs [180]. (d) Schematic of a monolithic HCG-VCSEL array with different HCG parameters.

下载图片 查看原文

Fig. 11. (a) Schematic of a VCSEL with a silicon HCG as a bottom mirror. An HCG serves as the bottom mirror and potentially serves as a waveguide coupler for an in-plane SOI waveguide, facilitating the integration of a VCSEL with in-plane silicon photonic circuits [188]. (b) Schematic of a vertical-cavity laser with lateral emission into a silicon waveguide via an HCG [189]. (c) Schematic of a vertical-cavity laser with in-plane out-coupling into a SiN waveguide. A subwavelength grating is inserted under a half-VCSEL to redirect the vertical resonance light to the in-plane SiN waveguide [192].

下载图片 查看原文

Table1. Modulation Bandwidths and Bit Rates of VCSELs at Room Temperature Using the Standard On–Off Keying in a Back-to-Back Data Transmission Configuration

Groupλ (nm)Bandwidth (GHz)Bit Rate (Gbps)Temperature (°C)Oxide Aperture (μm)YearRefs.
IBM85015.4202582001[54]
Finisar-IBM85019302562008[55]
CUT85020322592009[56]
CUT85023402572010[57]
CUT85028442572012[58]
CUT85024572582013[59]
CUT8503050253.52015[60]
TU Berlin85020302562009[61]
TU Berlin850402592009[62]
UIUC85021.2402042014[63]
UIUC85029.2572552016[64]
NCU85022.4402542013[65]
NCU85026412582015[66]
UCSB980>20352032007[67]
TU Berlin980442562011[40]
TU Berlin98024.7502552014[68]
TU Berlin98026.6522562016[39]
TU Berlin98035.52532018[69]
CUT106022502542017[70]
NEC11002025256.92006[53]
NEC110024302562007[71]
NEC110024402562008[72]

查看原文

Table2. Selected Results on Bandwidths and Bit Rates of VCSELs at High Temperatures in an On–Off Keying Modulation Format for Back-to-Back Data Transmission Configuration

Groupλ (nm)Bandwidth (GHz)Bit Rate (Gbps)Temperature (°C)Oxide Aperture (μm)YearRefs.
Finisar85010149582012[91]
Emcore8501628857.52013[92]
CUT85021408572013[93]
IBM-CUTa85021509062015[94]
UIUC85024.5508552016[64]
NCU85022.4348542013[65]
NCU85020418582015[66]
VIS8502515042018[95]
VIS8502513042018[95]
TU Berlin980112012032008[97]
TU Berlin980388562011[40]
TU Berlin9803012062011[40]
TU Berlin98023468552014[68]
TU Berlin98038855.52014[98]
TU Berlin98018358532014[99]
TU Berlin98024.5508562016[39]
CUT106016408542017[70]

查看原文

Table3. Energy Efficiencies of High-Speed VCSELs with the On–Off Keying Modulation Format in a Back-to-Back Data Transmission Configuration

Groupλ (nm)Bit Rate (Gbps)Temperature (°C)Energy eff. (fJ/bit)Oxide Aperture (μm)YearRefs.
TU Berlin-VIS85025259922011[96]
TU Berlin-VIS85017256922011[96]
TU Berlin-VIS8502525563.52012[101]
TU Berlin850402510842013[104]
CUT8505025953.52015[60]
CUT8504025733.52015[60]
UIUC850402039542014[63]
NCU85012.52510962011[105]
NCU850342534562011[105]
NCU850342510742013[65]
UCSB980352028632009[67]
TU Berlin98038851775.52014[98]
TU Berlin980358513932014[99]
TU Berlin980352514532015[106]
Furukawa106010251402011[107]
Furukawa10602525762014[108]
CUT1060502510042017[70]

查看原文

Anjin Liu, Philip Wolf, James A. Lott, Dieter Bimberg. Vertical-cavity surface-emitting lasers for data communication and sensing[J]. Photonics Research, 2019, 7(2): 02000121.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!