红外与激光工程, 2018, 47 (9): 0904001, 网络出版: 2018-10-06   

多波段冷光学红外成像终端研制

Development of cold optical infrared imaging terminal with multiband
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
针对目前地基空间探测红外成像系统对高灵敏度、高探测能力及信噪比的要求, 对地基冷光学红外成像技术进行了研究, 包括红外杜瓦冷却系统内部辐射抑制、系统终端快速制冷、低温红外探测器的研制、低温冷光学系统设计装调等关键技术。在各项系统技术突破的基础上, 研制出一套相对孔径1:10、分辨率320×256、兼容中波3~5 μm和长波8~10 μm波段的冷光学红外成像终端。系统终端实现制冷温度最低至42 K, 真空度10-5 Pa量级。将终端与1.23 m口径地基望远镜对接, 对月亮和红外标准星观测具有良好的成像效果。该系统的研究为地基大口径冷光学红外探测技术提供参考。
Abstract
In view of the requirements of high sensitivity, high detection ability and high signal-to-noise ratio of ground-based space exploration infrared imaging system, cold optical infrared imaging technique was studied. It included infrared Dewar cooling system, internal radiation suppression, rapid cooling of terminal system, development of low temperature infrared detector, room temperature adjustment, low temperature application and other key technologies. Based on the technical breakthrough of various systems, a cold optical infrared terminal with a relative aperture of 1:10, resolution of 320×256, compatible with medium wave 3-5 μm and long wave 8-10 μm band was developed. The system terminal works in 42 K temperature, 10-5 Pa vacuum environment. Docking with 1.23 m ground-based telescopes, a good observation result of moon and infrared stars was achieved. It lays an important foundation for ground-based infrared optical detection technology.
参考文献

[1] 殷丽梅, 刘莹奇, 李洪文. 实现高精度红外探测的冷光学技术[J]. 红外技术, 2013, 35(9): 535-540.

    Yin Limei, Liu Yingqi, Li Hongwen. Cold optics technology to achieve high-accuracy infrared detection[J]. Infrared Technology, 2013, 35(9): 535-540. (in Chinese)

[2] 王世涛, 张伟, 王强. 红外探测器件在低温背景下的探测率测试[J]. 光学 精密工程, 2012, 20(3): 484-491.

    Wang Shitao, Zhang Wei, Wang Qiang. Measurement for detectivity of infrared detectors in low temperature background[J]. Optics and Precision Engineering, 2012, 20(3): 484-491. (in Chinese)

[3] Rayner J T, Shure M A, Toomey D W, et al. Design of a new 1-5.5- 滋m infrared camera for the NASA Infrared Telescope Facility[C]//SPIE, 1993, 2198: 614-622.

[4] 屈金祥, 陆燕. 小型低温真空光学实验装置设计[J]. 红外与激光工程, 2006, 35(4): 464-467.

    Qu Jinxiang, Lu Yan. Design of small vacuum experiment equipment of cryogenic optics[J]. Infrared and Laser Engineering, 2006, 35(4): 464-467. (in Chinese)

[5] 李春来, 林春, 陈小文,等. 星载长波红外焦平面成像系统[J]. 红外与激光工程, 2012, 41(9): 2253-2260.

    Li Chunlai, Lin Chun, Chen Xiaowen, et al. Space-borne LWIR FPA imaging system[J]. Infrared and Laser Engineering, 2012, 41(9): 2253-2260. (in Chinese)

[6] 陈晓屏. 微型低温制冷技术的现状和发展趋势[J]. 红外与激光工程, 2008, 37(1): 45-49.

    Chen Xiaoping. Status and trends of the cryocooler in IRFPA detector[J]. Infrared and Laser Engineering, 2008, 37(1): 45-49. (in Chinese)

[7] Hodapp K W, Jensen J B, Irwin E M, et al. The Gemini Near-Infrared Imager(NIRI)[C]//SPIE, 2000, 115(814): 1388-1406.

[8] Briscoe D E, Vigil M L. AEOS radiometer system: a multichannel imaging radiometer[C]//SPIE, 1999, 3701: 206-213.

[9] Vigil M L, Witte D J, Levan P D, et al. Sensor suite for the Advanced Electro-Optical System (AEOS) 3.6-m telescope[C]//SPIE, 1996, 2819: 151-169.

[10] 沈宏海, 王国华, 丁金伟,等. 主动补偿无热化技术在机载红外光学系统中的应用[J]. 光学 精密工程, 2010, 18(3):593-601.

    Shen Honghai, Wang Guohua, Ding Jinwei, et al. Application of active-athermal compensation to airborne IR optical systems[J]. Optics and Precision Engineering, 2010, 18(3):593-601. (in Chinese)

[11] Liu Yingqi, Yang Qingyun, Liu Junchi, et al. MWIR imaging experiments with large F-number optics on LEO spacecraft[J]. Infrared Physics & Technology, 2014, 67(67): 315-317.

[12] 王元鹏. 中长波双色双视场红外光学系统设计[D]. 长春: 长春理工大学, 2014.

    Wang Yuanpeng. Design of a MWIR and LWIR dual-band/dual-filed optical system[D]. Changchun: Changchun University of Science and Technology, 2014. (in Chinese)

[13] 温彦博, 白剑, 侯西云,等. 红外无热化混合光学系统设计[J]. 光学仪器, 2005, 27(5): 82-86.

    Wen Yanbo, Bai Jian, Hou Xiyun, et al. Design of infrared hybrid athermal optical system [J]. Optical Instruments, 2005, 27(5): 82-86. (in Chinese)

[14] 周超. 低温红外系统光机结构设计[J]. 红外与激光工程, 2013, 42(8): 2092-2096

    Zhou Chao. Opto-mechanical design for a cryogenic IR system [J]. Infrared and Laser Engineering, 2013, 42(8): 2092-2096. (in Chinese)

[15] 刘祥意, 张景旭, 乔兵, 等. 应用于冷光学组件的透镜支撑技术研究[J]. 光学 精密工程, 2017, 25(7): 1850-1856.

    Liu Xiangyi, Zhang Jingxu, Qiao Bing, et al. Research on supporting technology of lens applied in cold optics assembly[J]. Optics and Precision Engineering, 2017, 25(7): 1850-1856. (in Chinese)

[16] 智喜洋, 王达伟, 谭凡教,等. 温度对空间红外光学系统性能的影响分析方法[J]. 红外与激光工程, 2015, 44(S1): 1-7.

    Zhi Xiyang, Wang Weida, Tan Fanjiao, et al. Analytical method of temperature effects on space infrared optical system performance[J]. Infrared and Laser Engineering, 2015, 44(S1): 1-7. (in Chinese)

[17] 李璟, 杨宝喜, 胡中华, 等. 星敏感器光学系统的研制与性能测试[J]. 光学学报, 2013, 33(5): 0522005.

    Li Jing, Yang Baoxi, Hu Zhonghua, et al. Development and performance testing of optical system for star sensor[J]. Acta Optica Sinica, 2013, 33(5): 0522005. (in Chinese)

黄智国, 王建立, 殷丽梅, 李宏壮, 刘俊池, 刘祥意. 多波段冷光学红外成像终端研制[J]. 红外与激光工程, 2018, 47(9): 0904001. Huang Zhiguo, Wang Jianli, Yin Limei, Li Hongzhuang, Liu Junchi, Liu Xiangyi. Development of cold optical infrared imaging terminal with multiband[J]. Infrared and Laser Engineering, 2018, 47(9): 0904001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!