中国激光, 2015, 42 (5): 0512001, 网络出版: 2015-05-06   

基于子带分解多尺度Retinex的红外图像自适应细节增强

Adaptive Detail Enhancement for Infrared Image Based on Subband-Decomposed Multi-Scale Retinex
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为实现高动态范围红外图像压缩和高亮区与阴影区细节增强,提出一种基于子带分解多尺度Retinex自适应细节增强方法。利用子带分解多尺度Retinex 获取三个独立光谱子带;利用引导滤波将各子带分为细节层和基础层;之后依据子带特性设计细节增强权值基函数,自适应实现红外图像细节增强;针对输出图像平滑区灰度不均匀特点,自适应求取Gamma 曲线实现灰度映射。实验结果表明:经本文算法处理后图像阴影区与高亮区细节得到明显增强,全局视觉效果良好。客观测评结果表明:本文算法有效增强图像细节信息,并且与经典基于双边滤波的细节增强算法比较,本文算法耗时没有增加。
Abstract
An adaptive detail enhancement method based on subband-decomposed multi-scale Retinex is proposed to deal with high dynamic range compression of infrared images and detail enhancement in both high light regions and dim regions. Three independent spectrum subbands using subband- decomposed multi- scale Retinex are gained. Then guided image filter is applied to get detail layer and base layer from each subband. Later the basis weight function for detail enhancement is proposed according to characteristic of separate spectrum subband. Adaptive detail enhancement is achieved with basis weight function. In order to eliminate the nonuniformity of gray intensity in the outcome image, a new adaptive way to get Gamma curve for gray value remapping is put forward. Experimental results show that the detail of the enhanced images is upgraded greatly in both high light regions and dim regions, and have a satisfied visual effect. Objective evaluation parameters illustrate that the proposed algorithm can effectively enhance detail of infrared images. In addition, the time consuming is not lengthened compared to other algorithms in the experiment.
参考文献

[1] Silverman J. Display and enhancement of infrared images[C]. Image Processing and its Applications, 1992., International Conference on. IET, 1992: 345-348.

[2] 金伟其, 刘斌, 范永杰, 等. 红外图像细节增强技术研究进展[J]. 红外与激光工程, 2012, 40(12): 2521-2527.

    Jin Weiqi, Liu Bin, Fan Yongjie, et al.. Review on infrared image detail enhancement techniques[J]. Infrared and Laser Engineering, 2011, 12(40): 2521-2527.

[3] 吴泽鹏, 宣明, 贾宏光, 等. 基于最优映射曲线的红外图像动态范围压缩和对比度增强方法[J]. 中国激光, 2013, 40(12): 1209002.

    Wu Zepeng, Xuan Ming, Jia Hongguang, et al.. Infrared image dynamic range compression and contrast enhancement based on optimal mapping curve[J]. Chinese J Lasers, 2013, 40(12): 1209002.

[4] Vickers V E. Plateau equalization algorithm for real-time display of high quality infrared imagery[J]. Opt Eng, 1996, 35(7): 1921-1926.

[5] Lai R, Yang Y T, Wang B J, et al.. A quantitative measure based infrared image enhancement algorithm using plateau histogram[J]. Opt Commun, 2010, 283(21): 4283-4288.

[6] Liang K, Ma Y, Xie Y, et al.. A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization[J]. Infrared Physics & Technology, 2012, 55(4): 309-315.

[7] 李丹, 王洪涛. 基于双混沌量子粒子群算法的的模糊图像增强研究[J]. 激光与光电子学进展, 2013, 50(10): 101102.

    Li Dan,Wang Hongtao. Fuzzy image enhancement based on dual chaotic quantum particle swarm algorithm[J]. Laser & Optoelectronics Progress, 2013, 50(10): 101102.

[8] 陈磊, 杨风暴, 王志社, 等. 红外与可见光图像的变分增强融合算法研究[J]. 激光与光电子学进展, 2014, 51(4): 041003.

    Chen Lei, Yang Fengbao, Wang Zhishe, et al.. Research on fusion algorithm of infrared and visible imagery based on variational enhanced model[J]. Laser & Optoelectronics Progress, 2014, 51(4): 041003.

[9] 尹雯, 李元祥, 周则明, 等. 基于稀疏表示的遥感图像融合方法[J]. 光学学报, 2013, 33(4): 0428003.

    Yin Wen, Li Yuanxiang, Zhou Zeming, et al.. Remote sensing image fusion based on sparse representation[J]. Acta Optica Sinica, 2013, 33(4): 0428003.

[10] 周渝人, 耿爱辉, 王莹, 等. 基于对比度增强的红外与可见光图像融合[J]. 中国激光, 2014, 41(9): 0909001.

    Zhou Yuren, Geng Aihui, Wang Ying, et al.. Contrast enhanced fusion of infrared and visible images[J]. Chinese J Lasers, 2014, 41(9): 0909001.

[11] Mohan S, Ravishankar M. Modified Contrast Limited Adaptive Histogram Equalization Based on Local Contrast Enhancement for Mammogram Images[M]. Heidelberg: Springer, 2013: 397-403.

[12] Abdullah-Al-Wadud M, Kabir M H, Dewan M A A, et al.. A dynamic histogram equalization for image contrast enhancement[J]. Consumer Electronics, IEEE Transactions on, 2007, 53(2): 593-600.

[13] Karali A O, Okman O E, Aytac T. Adaptive image enhancement based on clustering of wavelet coefficients for infrared sea surveillance systems[J]. Infrared Physics & Technology, 2011, 54(5): 382-394.

[14] 占必超, 吴一全, 纪守新. 基于平稳小波变换和Retinex的红外图像增强方法[J]. 光学学报, 2010, 30(10): 2788-2793.

    Zhan Bichao, Wu Yiquan, Ji Shouxin. Infrared image enhancement method based on stationary wavelet transformation and retinex [J]. Acta Optica Sinica, 2010, 30(10): 2788-2793.

[15] Branchitta F, Diani M, Corsini G, et al.. Dynamic-range compression and contrast enhancement in infrared imaging systems[J]. Opt Eng, 2008, 47(7): 076401.

[16] Zuo C, Chen Q, Liu N, Display and detail enhancement for high dynamic range infrared images[J]. Opt Eng, 2011, 50(12): 127401-127409.

[17] 贾宏光, 吴泽鹏, 朱明超, 等. 基于广义线性运算和双边滤波的红外图像增强[J]. 光学 精密工程, 2013, 21(12): 3272-3282.

    Jia Hongguang, Wu Zepeng, Zhu Mingchao, et al.. Infrared image enhancement based on generalized linear operation and bilateral filter[J]. Optics and Precision Engineering, 2013, 21(12): 3272-3282.

[18] 李明涛, 向伟, 赵耀宏. 红外图像的动态范围压缩和细节增强[J]. 计算机辅助设计与图形学学报, 2014, 26(9): 1460-1467.

    Li Mingtao, Xiang Wei, Zhao Yaohong. Dynamic range compression and detail enhancement of infrared image[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(9): 1460-1467.

[19] Land E H, McCann J J. Lightness and retinex theory[J]. J Opt Soc Am, 1971, 61(1): 1-11.

[20] Jobson D J, Rahman Z U, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.

[21] Jang J H, Bae Y, Ra J B. Contrast-enhanced fusion of multisensor images using subband-decomposed multiscale retinex[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3479-3490.

[22] Jang J H, Kim S D, Ra J B. Enhancement of optical remote sensing images by subband-decomposed multiscale retinex with hybrid intensity transfer function[J]. Geoscience and Remote Sensing Letters, IEEE, 2011, 8(5): 983-987.

[23] He K, Sun J, Tang X. Guided Image Filtering[M]. Heidelberg: Springer, 2010: 1-14.

[24] Jiang X, Yao H, Zhang S, et al.. Night video enhancement using improved dark channel prior[C]. Image Processing (ICIP), 2013 20th IEEE International Conference on. IEEE, 2013: 553-557.

[25] 冯策, 戴树岭. 一种改进的非锐化掩模深度图像增强算法[J]. 哈尔滨工业大学学报, 2014, 46(8): 108-112.

    Feng Ce, Dai Shuling. An improved unsharp masking method for depth map enhancement[J]. Journal of Harbin Institute of Technology, 2014, 46(8): 108-112.

[26] Liu X, Zhao J, Wang S. Nonlinear algorithm of image enhancement based on wavelet transform[C]. Information Engineering and Computer Science, 2009. ICIECS 2009. International Conference on. IEEE, 2009: 1-4.

李毅, 张云峰, 李宁, 方艳超, 吕春雷, 于国权, 陈娟. 基于子带分解多尺度Retinex的红外图像自适应细节增强[J]. 中国激光, 2015, 42(5): 0512001. Li Yi, Zhang Yunfeng, Li Ning, Fang Yanchao, Lü Chunlei, Yu Guoquan, Chen Juan. Adaptive Detail Enhancement for Infrared Image Based on Subband-Decomposed Multi-Scale Retinex[J]. Chinese Journal of Lasers, 2015, 42(5): 0512001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!