光学学报, 2020, 40 (1): 0111017, 网络出版: 2020-01-06   

针孔X射线荧光CT探测角度优化研究 下载: 1257次

Optimization of Detection Angle for Pinhole X-Ray Fluorescence Computed Tomography
郭静 1冯鹏 1,2,*邓露珍 1罗燕 1何鹏 1,2,**魏彪 1,2
作者单位
1 重庆大学光电技术及系统教育部重点实验室, 重庆 400044
2 重庆大学工业CT无损检测教育部工程研究中心, 重庆 400044
引用该论文

郭静, 冯鹏, 邓露珍, 罗燕, 何鹏, 魏彪. 针孔X射线荧光CT探测角度优化研究[J]. 光学学报, 2020, 40(1): 0111017.

Jing Guo, Peng Feng, Luzhen Deng, Yan Luo, Peng He, Biao Wei. Optimization of Detection Angle for Pinhole X-Ray Fluorescence Computed Tomography[J]. Acta Optica Sinica, 2020, 40(1): 0111017.

参考文献

[1] Deng L Z, Wei B, He P, et al. A Geant4-based Monte Carlo study of a benchtop multi-pinhole X-ray fluorescence computed tomography imaging[J]. International Journal of Nanomedicine, 2018, 13: 7207-7216.

[2] 段泽明, 姜其立, 刘俊, 等. 毛细管X光透镜聚焦的微束能量色散X射线衍射分析的研究[J]. 光学学报, 2018, 38(12): 1230002.

    Duan Z M, Jiang Q L, Liu J, et al. Micro energy dispersive X-ray diffraction analysis by polycapillary X-ray optics focusing[J]. Acta Optica Sinica, 2018, 38(12): 1230002.

[3] Jones B L, Krishnan S, Cho S H. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations[J]. Medical Physics, 2010, 37(7): 3809-3816.

[4] 陈珈佑, 张思远, 方伟, 等. X射线荧光CT成像技术最新进展[J]. 中国体视学与图像分析, 2018, 23(1): 102-116.

    Chen J Y, Zhang S Y, Fang W, et al. The latest development of X-ray fluorescence computed tomography[J]. Chinese Journal of Stereology and Image Analysis, 2018, 23(1): 102-116.

[5] Jones B L, Cho S H. The feasibility of polychromatic cone-beam X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects: a Monte Carlo study[J]. Physics in Medicine and Biology, 2011, 56(12): 3719-3730.

[6] Fu G, Meng L J, Eng P, et al. Experimental demonstration of novel imaging geometries for X-ray fluorescence computed tomography[J]. Medical Physics, 2013, 40(6): 061903.

[7] Liu L, Huang Y, Xu Q, et al. Attenuation correction of L-shell X-ray fluorescence computed tomography imaging[J]. Chinese Physics C, 2015, 39(3): 038203.

[8] Feng P, Cong W X, Wei B, et al. Analytic comparison between X-ray fluorescence CT and K-edge CT[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(3): 975-985.

[9] Hertz H M, Larsson J C, Lundström U, et al. Laboratory X-ray fluorescence tomography for high-resolution nanoparticle bio-imaging[J]. Optics Letters, 2014, 39(9): 2790-2793.

[10] Li L, Zhang S Y, Li R Z, et al. Full-field fan-beam X-ray fluorescence computed tomography with a conventional X-ray tube and photon-counting detectors for fast nanoparticle bioimaging[J]. Optical Engineering, 2017, 56(4): 043106.

[11] Jung S, Kim T, Lee W, et al. Dynamic in vivo X-ray fluorescence imaging of gold in living mice exposed to gold nanoparticles[J]. IEEE Transactions on Medical Imaging, 2019, 1.

[12] Takeda T, Akiba M, Yuasa T, et al. Fluorescent X-ray computed tomography with synchrotron radiation using fan collimator[J]. Proceedings of SPIE, 1996, 2708: 685-695.

[13] Zhang S, Li L, Chen J, et al. Quantitative imaging of Gd nanoparticles in mice using benchtop cone-beam X-ray fluorescence computed tomography system[J]. International Journal of Molecular Sciences, 2019, 20(9): 2315.

[14] Ahmad M, Bazalova-Carter M, Fahrig R, et al. Optimized detector angular configuration increases the sensitivity of X-ray fluorescence computed tomography (XFCT)[J]. IEEE Transactions on Medical Imaging, 2015, 34(5): 1140-1147.

[15] Kuang Y, Pratx G, Bazalova M, et al. Development of XFCT imaging strategy for monitoring the spatial distribution of platinum-based chemodrugs: instrumentation and phantom validation[J]. Medical Physics, 2013, 40(3): 030701.

[16] Ahmad M, Bazalova M, Xiang L Z, et al. Order of magnitude sensitivity increase in X-ray fluorescence computed tomography (XFCT) imaging with an optimized spectro-spatial detector configuration: theory and simulation[J]. IEEE Transactions on Medical Imaging, 2014, 33(5): 1119-1128.

[17] Cho H M, Ding H, Ziemer B P, et al. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study[J]. Physics in Medicine and Biology, 2014, 59(23): 7211-7227.

[18] Dunning S, Bazalova-Carter M. Optimization of a table-top X-ray fluorescence computed tomography (XFCT) system[J]. Physics in Medicine & Biology, 2018, 63(23): 235013.

[19] Poludniowski G, Landry G. DeBlois F, et al. SpekCalc: a program to calculate photon spectra from tungsten anode X-ray tubes[J]. Physics in Medicine and Biology, 2009, 54(19): N433-N438.

[20] Sjölin M, Danielsson M. Improved signal-to-noise ratio for non-perpendicular detection angles in X-ray fluorescence computed tomography (XFCT)[J]. Physics in Medicine and Biology, 2014, 59(21): 6507-6520.

[21] Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography[J]. Journal of Computer Assisted Tomography, 1984, 8(2): 306-316.

[22] Dickerscheid D, Lavalaye J, Romijn L, et al. Contrast-noise-ratio (CNR) analysis and optimisation of breast-specific gamma imaging (BSGI) acquisition protocols[J]. EJNMMI Research, 2013, 3(1): 21.

郭静, 冯鹏, 邓露珍, 罗燕, 何鹏, 魏彪. 针孔X射线荧光CT探测角度优化研究[J]. 光学学报, 2020, 40(1): 0111017. Jing Guo, Peng Feng, Luzhen Deng, Yan Luo, Peng He, Biao Wei. Optimization of Detection Angle for Pinhole X-Ray Fluorescence Computed Tomography[J]. Acta Optica Sinica, 2020, 40(1): 0111017.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!