红外与毫米波学报, 2017, 36 (5): 581, 网络出版: 2017-11-21   

一种利用恒星进行遥感卫星辐射定标的方法

A flux calibration method for remote sensing satellites using star flux
许春 1,2,*
作者单位
1 中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200083
2 上海天文台—上海技术物理研究所 红外天文技术联合研究中心, 上海 200030
摘要
恒星巡天测量与模型分析显示大量恒星在0.3~35 μm波段内的绝对辐射精度达到3%, 在可见光波段接近1%.恒星与恒星之间的相对辐射定标精度优于0.2%.部分恒星具有极好的辐射稳定性, 可以作为长期稳定的辐射基准.但是恒星有效亮度通常比地面目标低几个量级, 并且恒星一般不会直接出现在遥感卫星视场, 不利于用作定标源.这里讨论的利用恒星进行辐射定标的方法是在遥感卫星上安装一个与遥感相机波段接近的微型定标相机, 它的指向可以通过转动机构在恒星与地面目标之间转换.在观测恒星时通过延长积分时间来获取高信噪比信号, 在观测地面目标时由于和遥感相机同时同视场观测有利于精确交叉定标.这个方法可以将作为标准源的恒星辐射直接传递到观测目标.目前分析显示最佳定标精度可以达到2%以内.
Abstract
Star surveys and model analyses show that many stars have absolute stable fluxes as good as 3% in 0.3~35μm wavebands and about 1% in the visible wavebands. The relative flux calibrations between stars are better than 0.2%. Some stars have extremely stable fluxes and can be used as long term flux calibration sources. Stellar brightness is several orders of magnitude lower than that of most ground objects. However, the stars do not usually appear in remote sensing cameras, which makes the stars inappropriate for being calibration sources. The calibration method using stars discussed in this paper is through a mini-camera attached to remote sensing satellite. The mini-camera works at similar wavebands as the remote sensing cameras and it can observe the stars and the ground objects alternatively. High signal-to-noise ratio is achieved for the relatively faint stars through longer exposure time. Simultaneous precise cross-calibration is obtained as the mini-camera and remote sensing cameras look at the ground objects at the same time. The fluxes from the stars used as calibration standards are transferred to the remote sensing cameras through this procedure. Analysis shows that a 2% accurate calibration is possible.
参考文献

[1] Kaiser M E, Kruk J W, McCandliss S R, et al. ACCESS: design and preliminary performance[C], SPIE, 2010, 7731: 3IK.

[2] HAN Qi-jin, Fu Qiao-yan, ZHANG Xue-wen, et al. High-frequency radiometric calibration for wide field-of-view sensor of GF-1 satellite[J], Optics and Precision Engineering (韩启金, 傅俏燕, 张学文, 等. 高分一号卫星宽视场成像仪的高频次辐射定标. 光学精密工程), 2014, 22(7): 1707-1714.

[3] HAN Qi-jin, FU Qiao-yan, PAN Zhi-qiang,et al. Absolute radiometric calibration and analysis of ZY-3 using artificial targets[J], Infrared and Laser Engineering (韩启金, 傅俏燕, 潘志强,等. 资源三号卫星靶标法绝对辐射定标与验证分析.红外与激光工程), 2013,42(S1): 167-174.

[4] PAN De-lu, HE Xian-qiang, ZHU Qian-kun. In-orbit cross-calibration of HY-1A satellite sensor COCTS[J], Chinese Science Bulletin (潘德炉, 何贤强, 朱乾坤. HY-1A卫星遥感器水色水温扫描仪在轨交叉定标. 科学通报), 2004, 49(21): 2239-2244.

[5] Thuillier G , Herse M , Labs D,et al. The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the Solspec Spectrometer from the ATLAS and EURECA Missions[J].Solar Phys., 2003, 214: 1-22.

[6] Stone T C , Kieffer H H , Grant I F , Potential for calibration of geostationary meteorological satellite imagers using the Moon[C]. SPIE,2005: 5882-5891.

[7] GUO Qiang, CHEN Bo-Yang, YANG Chang-Jun,et al. A new approach of on-orbit radiometric calibration for water-vapor band of FY-2 satellite[J], J. Infrared Millim. Waves (郭强、陈博洋、杨昌军,等. 风云二号卫星水汽波段在轨辐射定标新方法.红外与毫米波学报), 2012, 31(6): 523-527.

[8] XU Jian-min, GUO Qiang, LU Qi-feng,et al. Innovations in the data processing algorithm for Chinese FY meteorological satellites[J], Acta Meteorologica Sinica (许健民,郭强,陆其峰.等. 风云气象卫星数据处理算法的若干创新. 气象学报), 2014, 72(5): 1023-1038.

[9] ZHANG Yong, RONG Zhi-guo, MIN Min. Accuracy evaluations of the CRCS in-orbit radiometric calibration methods for thermal infrared channels[J]. Advances in Earth Science (张勇, 戎志国, 闵敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精确评估. 地球科学进展), 2016, 31(2);171-179.

[10] Bowen H S , Absolute Radiometric Calibration of the IKONOS Sensor Using Radiometrically Characterized Stellar Sources[C]. 2002, ISPRS Archives, Volume XXXIV Part 1, Pecora 15/Land Satellite Information IV/ISPRS Commission I/FIEOS 2002 Conference Proceedings.

[11] Kurucz R, Opacities for Stellar Atmospheres[DB],1993.

[12] Castelli F, Kurucz R. Modelling of Stellar Atmospheres[C], IAU Symposium 210, Uppsala, Sweden, eds. 2003, ASP-S210.

[13] Perryman MAC , The Hipparcos and Tycho Catalogues[C],1997,ESA Special Publication.

[14] Luri X , Palmer M , Arenou F, et al. Overview and stellar statistics of the expected Gaia Catalogue using the Gaia Object Generator[J], 2014, A&A,566: 119-134.

[15] Smith A W , Woodward J T , Jenkins C A, et al. Absolute flux calibration of stars: calibration of the reference telescope[J],Metrologia,2009,46: 219-223.

[16] Megessier C., Accuracy of the astrophysical absolute flux calibrations: visible and near-infrared[J], A&A, 1995, 296: 771-778.

[17] Bohlin R C , Gilliland R L. Hubble Space Telescope Absolute Spectrophotometry of Vega from the far-Ultraviolet to the Infrared[J]. AJ, 2004,127: 3508-3515.

[18] Cohen M , Witteborn F C , Carbon D F, et al. Spectral Irradiance Calibration in the Infrared[J],1996,AJ,112: 2274-2285.

[19] Price S D , Paxson C , Engelke C, et al. Spectral Irradiance Calibration in the Infrared[J], AJ, 2004,128: 889-910.

[20] VizieR Photometry viewer[OL](虚拟天文台网址).http://vizier.u-strasbg.fr/vizier/sed/.

[21] Cardelli J A,Clayton G C, Mathis J S. The relationship between infrared, optical, and ultraviolet extinction[J], ApJ, 1989, 345: 245-256.

[22] Hubble Space Telescope Exposure Time Calculator[0L](哈勃望远镜信噪比计算公式). http://etc.stsci.edu/etcstatic/users_guide/1_2_1_snr.html.

[23] Aperture Photometry Tool[OL]. http://www.aperturephotometry.org/.

[24] Gilmore D , Ritchie C, Mackenty J, et al. NIC1 Narrow-band Earth Flats[R], 1998, Instrument Science Report NIC-98-011.

许春. 一种利用恒星进行遥感卫星辐射定标的方法[J]. 红外与毫米波学报, 2017, 36(5): 581. XU Chun. A flux calibration method for remote sensing satellites using star flux[J]. Journal of Infrared and Millimeter Waves, 2017, 36(5): 581.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!