光学学报, 2017, 37 (6): 0627001, 网络出版: 2017-06-08   

基于奇相干光源非对称信道的量子密钥分配协议

Quantum Key Distribution Protocols Based on Asymmetric Channels of Odd Coherent Sources
作者单位
西安邮电大学通信与信息工程学院, 陕西 西安 710121
引用该论文

康丹娜, 何业锋. 基于奇相干光源非对称信道的量子密钥分配协议[J]. 光学学报, 2017, 37(6): 0627001.

Kang Danna, He Yefeng. Quantum Key Distribution Protocols Based on Asymmetric Channels of Odd Coherent Sources[J]. Acta Optica Sinica, 2017, 37(6): 0627001.

参考文献

[1] Huang B H, Chen Y H, Wu Q C, et al. Fast generating Greenberger-Horne-Zeilinger state via iterative interaction pictures[J]. Laser Physics Letters, 2016, 13(10): 105202.

[2] Chen Y H, Huang B H, Song J, et al. Transitionless-based shortcuts for the fast and robust generation of W states[J]. Optics Communications, 2016, 380: 140-147.

[3] Chen Y H, Xia Y, Chen Q Q, et al. Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states[J]. Physical Review A, 2014, 91(1): 012325.

[4] Lu P M, Xia Y, Song J. Efficient W polarization state distribution over an arbitrary collective-noise channel with cross-Kerr nonlinearity[J]. Optics Communications, 2011, 284(24): 5866-5870.

[5] 王中结, 阮 飞, 方 旭. 基于免退纠缠态的原子态隐形传输[J]. 光学学报, 2015, 35(3): 0327001.

    Wang Zhongjie, Ruan Fei, Fang Xu. Teleportation for atomic state based on disentanglement-free state[J]. Acta Optica Sinica, 2015, 35(3): 0327001.

[6] Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Applied Physics Letters, 2012, 101(7): 071107.

[7] Bennett C H, Brassard G. An update on quantum cryptography[C]. Advances in Cryptology, Proceedings of CRYPTO, 1984: 475-480.

[8] 刘友明, 汪 超, 黄 端, 等. 高速连续变量量子密钥分发系统同步技术研究[J]. 光学学报, 2015, 35(1): 0106006.

    Liu Youming, Wang Chao, Huang Duan, et al. Study of synchronous technology in high-speed continuous variable quantum key distribution system[J]. Acta Optica Sinica, 2015, 35(1): 0106006.

[9] Peres A. Quantum cryptography with orthogonal states[J]. Physical Review Letters, 1996, 77(15): 3264-3264.

[10] Bennett C H. Quantum cryptography using any two nonorthogonal states[J]. Physical Review Letters, 1992, 68(68): 3121-3124.

[11] Brassard G, Lutkenhaus N, Mor T, et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 2000, 85(6): 1330-1333.

[12] Zhao Y, Fung C H F, Qi B, et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2008, 78: 042333.

[13] Lydersen L, Skaar J, Makarov V. Tailored bright illumination attack on distributed-phase-reference protocols[J]. Journal of Modern Optics, 2010, 58(8): 680-685.

[14] Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols[J]. Quantum Information & Computation, 2007, 8(6): 622-635.

[15] Makarov V, Hjelme D R. Faked states attack on quantum cryptosystems[J]. Journal of Modern Optics, 2005, 52(5): 691-705.

[16] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503.

[17] 吴承峰, 杜亚男, 王金东, 等. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析[J]. 物理学报, 2016, 65(10): 100302.

    Wu Chengfeng, Du Yanan, Wang Jindong, et al. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states[J]. Acta Physica Sinica, 2016, 65(10): 100302.

[18] 颜 龙, 孙 豪, 赵生妹. 应用诱骗态的光子轨道角动量测量设备无关量子密钥分发协议的研究[J]. 信号处理, 2014, 11: 1275-1278.

    Yan Long, Sun Hao, Zhao Shengmei. Study on decoyed measurement device independent quantum key distribution protocol using orbital angular momentum[J]. Journal of Signal Processing, 2014, 11: 1275-1278.

[19] Braunstein S L, Pirandola S. Side-channel-free quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130502.

[20] Sasaki M, Suzuki S. Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light: Analytical formula[J]. Physical Review A, 2006, 73(4): 043807.

[21] Wenger J, Brouri R T, Grangier P. Non-Gaussian statistics from individual pulses of squeezed light[J]. Physical Review Letters, 2004, 92: 153601.

[22] 东 晨, 赵尚弘, 张 宁, 等. 奇相干光源的测量设备无关量子密钥分配研究[J]. 物理学报, 2014, 63(20): 200304.

    Dong Chen, Zhao Shanghong, Zhang Ning, et al. Measurement-device-independent quantum key distribution with odd coherent state[J]. Acta Physica Sinica, 2014, 63(20): 200304.

[23] Sun S H, Gao M, Li C Y, et al. Practical decoy-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2013, 87(5): 052329.

[24] Ma X F, Razavi M, Panayi C. Alternative schemes for measurement-device-independent quantum key distribution[J]. Physical Review A, 2012, 86(6): 062319.

[25] 东 晨, 赵尚弘, 赵卫虎, 等. 非对称信道传输效率的测量设备无关量子密钥分配研究[J]. 物理学报, 2014, 63(3): 030302.

    Dong Chen, Zhao Shanghong, Zhao Weihu, et al. Analysis of measurement-device-independent quantum key distribution under asymmetric channel transmittance efficiency[J]. Acta Physica Sinica, 2014, 63(3): 030302.

康丹娜, 何业锋. 基于奇相干光源非对称信道的量子密钥分配协议[J]. 光学学报, 2017, 37(6): 0627001. Kang Danna, He Yefeng. Quantum Key Distribution Protocols Based on Asymmetric Channels of Odd Coherent Sources[J]. Acta Optica Sinica, 2017, 37(6): 0627001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!