光学学报, 2017, 37 (6): 0627001, 网络出版: 2017-06-08   

基于奇相干光源非对称信道的量子密钥分配协议

Quantum Key Distribution Protocols Based on Asymmetric Channels of Odd Coherent Sources
作者单位
西安邮电大学通信与信息工程学院, 陕西 西安 710121
摘要
针对传统量子密钥分配协议使用非理想单光子源会带来密钥生成率过低的问题, 对光源进行优化, 以奇相干光源代替传统弱相干光源, 提出了基于奇相干光源非对称信道的测量设备无关量子密钥分配协议。在奇相干光源下, 对比了对称信道和非对称信道测量设备无关量子密钥分配协议的性能优劣。分析了该协议中密钥生成率、单边效率与信道损耗之间的关系。仿真结果表明, 奇相干光源的引入弥补了传统光源的不足, 多光子数大大减少。随着信道损耗的增加, 密钥生成率降低, 但非对称信道的性能仍高于对称信道的。
Abstract
In order to solve the problem that the key generation rate is too low when the non-ideal single photon source is used in the traditional quantum key distribution protocol, the light source is optimized, an odd coherent light source is used to replace the traditional weak coherent light source, and a measurement-device-independent quantum key distribution protocol based on the asymmetric channels of odd coherent sources is proposed. The performances of measurement-device-independent quantum key distribution protocols for symmetric and asymmetric channels with the odd coherent light source are compared. The relationship between the channel loss and the key generation rate and single-side efficiency in the proposed protocol is analyzed. The simulation results show that the introduction of the odd coherent light source makes up the deficiency of the traditional light source and also reduces the number of photons greatly. With the increase of the channel loss, the key generation rate decreases, but the performance of the asymmetric channel is still higher than that of the symmetric channel.
参考文献

[1] Huang B H, Chen Y H, Wu Q C, et al. Fast generating Greenberger-Horne-Zeilinger state via iterative interaction pictures[J]. Laser Physics Letters, 2016, 13(10): 105202.

[2] Chen Y H, Huang B H, Song J, et al. Transitionless-based shortcuts for the fast and robust generation of W states[J]. Optics Communications, 2016, 380: 140-147.

[3] Chen Y H, Xia Y, Chen Q Q, et al. Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states[J]. Physical Review A, 2014, 91(1): 012325.

[4] Lu P M, Xia Y, Song J. Efficient W polarization state distribution over an arbitrary collective-noise channel with cross-Kerr nonlinearity[J]. Optics Communications, 2011, 284(24): 5866-5870.

[5] 王中结, 阮 飞, 方 旭. 基于免退纠缠态的原子态隐形传输[J]. 光学学报, 2015, 35(3): 0327001.

    Wang Zhongjie, Ruan Fei, Fang Xu. Teleportation for atomic state based on disentanglement-free state[J]. Acta Optica Sinica, 2015, 35(3): 0327001.

[6] Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Applied Physics Letters, 2012, 101(7): 071107.

[7] Bennett C H, Brassard G. An update on quantum cryptography[C]. Advances in Cryptology, Proceedings of CRYPTO, 1984: 475-480.

[8] 刘友明, 汪 超, 黄 端, 等. 高速连续变量量子密钥分发系统同步技术研究[J]. 光学学报, 2015, 35(1): 0106006.

    Liu Youming, Wang Chao, Huang Duan, et al. Study of synchronous technology in high-speed continuous variable quantum key distribution system[J]. Acta Optica Sinica, 2015, 35(1): 0106006.

[9] Peres A. Quantum cryptography with orthogonal states[J]. Physical Review Letters, 1996, 77(15): 3264-3264.

[10] Bennett C H. Quantum cryptography using any two nonorthogonal states[J]. Physical Review Letters, 1992, 68(68): 3121-3124.

[11] Brassard G, Lutkenhaus N, Mor T, et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 2000, 85(6): 1330-1333.

[12] Zhao Y, Fung C H F, Qi B, et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2008, 78: 042333.

[13] Lydersen L, Skaar J, Makarov V. Tailored bright illumination attack on distributed-phase-reference protocols[J]. Journal of Modern Optics, 2010, 58(8): 680-685.

[14] Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols[J]. Quantum Information & Computation, 2007, 8(6): 622-635.

[15] Makarov V, Hjelme D R. Faked states attack on quantum cryptosystems[J]. Journal of Modern Optics, 2005, 52(5): 691-705.

[16] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503.

[17] 吴承峰, 杜亚男, 王金东, 等. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析[J]. 物理学报, 2016, 65(10): 100302.

    Wu Chengfeng, Du Yanan, Wang Jindong, et al. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states[J]. Acta Physica Sinica, 2016, 65(10): 100302.

[18] 颜 龙, 孙 豪, 赵生妹. 应用诱骗态的光子轨道角动量测量设备无关量子密钥分发协议的研究[J]. 信号处理, 2014, 11: 1275-1278.

    Yan Long, Sun Hao, Zhao Shengmei. Study on decoyed measurement device independent quantum key distribution protocol using orbital angular momentum[J]. Journal of Signal Processing, 2014, 11: 1275-1278.

[19] Braunstein S L, Pirandola S. Side-channel-free quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130502.

[20] Sasaki M, Suzuki S. Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light: Analytical formula[J]. Physical Review A, 2006, 73(4): 043807.

[21] Wenger J, Brouri R T, Grangier P. Non-Gaussian statistics from individual pulses of squeezed light[J]. Physical Review Letters, 2004, 92: 153601.

[22] 东 晨, 赵尚弘, 张 宁, 等. 奇相干光源的测量设备无关量子密钥分配研究[J]. 物理学报, 2014, 63(20): 200304.

    Dong Chen, Zhao Shanghong, Zhang Ning, et al. Measurement-device-independent quantum key distribution with odd coherent state[J]. Acta Physica Sinica, 2014, 63(20): 200304.

[23] Sun S H, Gao M, Li C Y, et al. Practical decoy-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2013, 87(5): 052329.

[24] Ma X F, Razavi M, Panayi C. Alternative schemes for measurement-device-independent quantum key distribution[J]. Physical Review A, 2012, 86(6): 062319.

[25] 东 晨, 赵尚弘, 赵卫虎, 等. 非对称信道传输效率的测量设备无关量子密钥分配研究[J]. 物理学报, 2014, 63(3): 030302.

    Dong Chen, Zhao Shanghong, Zhao Weihu, et al. Analysis of measurement-device-independent quantum key distribution under asymmetric channel transmittance efficiency[J]. Acta Physica Sinica, 2014, 63(3): 030302.

康丹娜, 何业锋. 基于奇相干光源非对称信道的量子密钥分配协议[J]. 光学学报, 2017, 37(6): 0627001. Kang Danna, He Yefeng. Quantum Key Distribution Protocols Based on Asymmetric Channels of Odd Coherent Sources[J]. Acta Optica Sinica, 2017, 37(6): 0627001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!