光电工程, 2017, 44 (12): 1133, 网络出版: 2018-01-17   

双光束超分辨激光直写纳米加工技术

Dual-beam super-resolution direct laser writing nanofabrication technology
作者单位
暨南大学光子技术研究院,广东省光纤传感与通信技术重点实验室,广州 510632
引用该论文

曹耀宇, 谢飞, 张鹏达, 李向平. 双光束超分辨激光直写纳米加工技术[J]. 光电工程, 2017, 44(12): 1133.

Yaoyu Cao, Fei Xie, Pengda Zhang, Xiangping Li. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133.

参考文献

[1] Fischer J, Wegener M. Three-dimensional optical laser li-thography beyond the diffraction limit[J]. Laser & Photonics Reviews, 2013, 7(1): 22–44.

[2] Liu Liqin, Zhang Xiaohu, Zhao Zeyu, et al. Batch fabrication of metasurface holograms enabled by plasmonic cavity lithog-raphy[J]. Advanced Optical Materials, 2017, 5(21): 1700429.

[3] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & As-tronomy, 2015, 58(9): 594201.

[4] Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110.

[5] Andrew T L, Tsai H Y, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopattern-ing[J]. Science, 2009, 324(5929): 917–921.

[6] 刘立鹏, 周明, 戴起勋, 等. 飞秒激光三维微细加工技术[J]. 光电工程, 2005, 32(4): 93–96.

    Liu Lipeng, Zhou Ming, Dai Qixun, et al. Three-dimensional micro-fabrication by femtosecond laser[J]. Opto-Electronic Engineering, 2005, 32(4): 93–96.

[7] 田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程, 2017, 44(1): 69–76.

    Tian Xiaoyong, Yin Lixian, Li Dichen. Current situation and trend of fabrication technologies for three-dimensional met-amaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69–76.

[8] de Miguel G, Duocastella M, Vicidomini G, et al. λ/20 axial control in 2.5D polymerized structures fabricated with DLW li-thography[J]. Optics Express, 2015, 23(19): 24850–24858.

[9] Kawata S, Sun Hongbo, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697–698.

[10] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluo-rescence microscopy[J]. Optics Letters, 1994, 19:780–782.

[11] Elmeranta M, Vicidomini G, Duocastella M, et al. Characteri-zation of nanostructures fabricated with two-beam DLW li-thography using STED microscopy[J]. Optical Materials Ex-press, 2016, 6(10): 3169–3179.

[12] Harke B, Keller J, Ullal C K, et al. Resolution scaling in STED microscopy[J]. Optics Express, 2008, 16(6): 4154–4162.

[13] Klar T A, Wollhofen R, Jacak J. Sub-Abbe resolution: from STED microscopy to STED lithography[J]. Physica Scripta, 2014, 162: 014049.

[14] Barner-Kowollik C, Bastmeyer M, Blasco E, et al. 3D laser micro-and nanoprinting: challenges for chemistry[J]. An-gewandte Chemie International Edition, 2017, 56(50): 15828–15845.

[15] Malinauskas M, ukauskas A, Hasegawa S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 2016, 5(8): e16133.

[16] Glubokov D A, Sychev V V, Vitukhnovsky A G, et al. Photonic crystal fibre-based light source for STED lithography[J]. Quantum Electronics, 2013, 43(6): 588–590.

[17] Mueller J B, Fischer J, Mayer F, et al. Polymerization kinetics in three-dimensional direct laser writing[J]. Advanced Materials, 2014, 26(38): 6566–6571.

[18] Harke B, Bianchini P, Brandi F, et al. Photopolymerization inhibition dynamics for sub-diffraction direct laser writing li-thography[J]. Chem Phys Chem, 2012, 13(6): 1429–1434.

[19] Gan Zongsong, Cao Yaoyu, Jia Baohua, et al. Dynamic modeling of superresolution photoinduced-inhibition nanolithography[J]. Optics Express, 2012, 20(15): 16871–16879.

[20] Cao Yaoyu, Gan Zongsong, Jia Baohua, et al. High- photo-sensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J]. Optics Express, 2011, 19(20): 19486–19494.

[21] Gan Zongsong, Cao Yaoyu, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithog-raphy with 9 nm feature size[J]. Nature Communication, 2013, 4: 2061.

[22] Scott T F, Kowalski B A, Sullivan A C, et al. Two-color sin-gle-photon photoinitiation and photoinhibition for subdiffrac-tion photolithography[J]. Science, 2009, 324(5929): 913–917.

[23] Li Linjie, Gattass R R, Gershgoren E, et al. Achieving λ/20 Resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910–913.

[24] Fischer J, von Freymann G, Wegener M. The materials chal-lenge in diffraction-unlimited direct-laser-writing optical lithog-raphy[J]. Advanced Materials, 2010, 22(32): 3578–3582.

[25] Fischer J, Wegener M. Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nano-lithography[J]. Advanced Materials, 2012, 24(10): OP65–OP69.

[26] Mueller P, Zieger M M, Richter B, et al. Molecular switch for sub-diffraction laser lithography by photoenol intermedi-ate-state cis-trans isomerization[J]. ACS Nano, 2017, 11(6): 6396–6403.

[27] Wollhofen R, Katzmann J, Hrelescu C, et al. 120 nm resolution and 55 nm structure size in STED-lithography[J]. Optics Ex-press, 2013, 21(9): 10831–10840.

[28] Wollhofen R, Buchegger B, Eder C, et al. Functional photo-resists for sub-diffraction stimulated emission depletion li-thography[J]. Optical Materials Express, 2017, 7(7): 2538–2559.

[29] He Xiaolong, Datta A, Nam W, et al. Sub-diffraction limited writing based on laser induced periodic surface structures (LIPSS)[J]. Science Report, 2016, 6: 35035.

[30] Yang Liang, Qian Dongdong, Xin Chen, et al. Direct laser writing of complex microtubes using femtosecond vortex beams[J]. Applied Physics Letters, 2017, 110(22): 221103.

[31] Fr lich A, Fischer J, Zebrowski T, et al. Titania woodpiles with complete three-dimensional photonic bandgaps in the visi-ble[J]. Advanced Materials, 2013, 25(26): 3588–3592.

[32] Kaschke J, Wegener M. Gold triple-helix mid-infrared met-amaterial by STED-inspired laser lithography[J]. Optics Letters, 2015, 40(17): 3986–3989.

[33] Gan Zongsong, Turner M D, Gu Min. Biomimetic gyroid nanostructures exceeding their natural origins[J]. Science Advances, 2016, 2(5): e1600084.

[34] Gu Min, Li Xiangping, Cao Yaoyu. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 2014, 3(5): e177.

[35] Li Xiangping, Cao Yaoyu, Tian Nian, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gi-gabits/second data rate[J]. Optica, 2015, 2(6): 567–570.

[36] Wiesbauer M, Wollhofen R, Vasic B, et al. Nano-anchors with single protein capacity produced with STED lithography[J]. Nano Letters, 2013, 13(11): 5672-5678.

[37] Wolfesberger C, Wollhofen R, Buchegger B, et al. Streptavidin functionalized polymer nanodots fabricated by visible light li-thography[J]. Journal of Nanobiotechnology, 2015, 13: 27.

[38] Buchegger B, Kreutzer J, Plochberger B, et al. Stimulated emission depletion lithography with mercapto-functional pol-ymers[J]. ACS Nano, 2016, 10(2): 1954–1959.

[39] Vasilantonakis N, Terzaki K, Sakellari I, et al. Three-dimensional metallic photonic crystals with optical bandgaps[J]. Advanced Materials, 2012, 24(8): 1101-1105.

[40] Ovsianikov A, Mironov V, Stampfl J, et al. Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications[J]. Expert Re-view of Medical Devices, 2012, 9(6): 613-633.

[41] Selimovi S, Oh J, Bae H, et al. Microscale strategies for generating cell-encapsulating hydrogels[J]. Polymers, 2012, 4(3): 1554-1579.

[42] Klein F, Richter B, Striebel T, et al. Two-component polymer scaffolds for controlled three-dimensional cell culture[J]. Ad-vanced Materials, 2011, 23(11): 1341-1345.

[43] Scheiwe A C, Frank S C, Autenrieth T J, et al. Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds[J]. Biomaterials, 2015, 44: 186-194.

[44] Wickberg A, Mueller J B, Mange Y J, et al. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence[J]. Applied Physics Letters, 2015, 106(13): 133103.

[45] Farahani R D, Dubé M, Therriault D. Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications[J]. Advanced Materials, 2016, 28(28): 5794–5821.

[46] Malinauskas M, Baltriukiene D, Kraniauskas A, et al. In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers[J]. Applied Physics A: Materials Science & Pro-cessing, 2012, 108(3): 751-759.

[47] Kumpfmueller J, Stadlmann K, Li Zhiquan, et al. Two-photon-induced thiol-ene polymerization as a fabrication tool for flexible optical waveguides[J]. Designed Monomers and Polymers, 2014, 17(4): 390-400.

[48] Quick A S, Fischer J, Richter B, et al. Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry[J]. Macromolecular Rapid Communications, 2013, 34(4): 335-340.

[49] Terzaki K, Vasilantonakis N, Gaidukeviciute A, et al. 3D con-ducting nanostructures fabricated using direct laser writing[J]. Optics Materials Express, 2011, 1(4): 586-597.

[50] Jin Jinjin, Pu Mingbo, Wang Yanqin, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201.

[51] Formanek F, Takeyasu N, Tanaka T. Three-dimensional fab-rication of metallic nanostructures over large areas by two-photon polymerization[J]. Optics Express, 2006, 14(2): 800–809.

曹耀宇, 谢飞, 张鹏达, 李向平. 双光束超分辨激光直写纳米加工技术[J]. 光电工程, 2017, 44(12): 1133. Yaoyu Cao, Fei Xie, Pengda Zhang, Xiangping Li. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!