光子学报, 2006, 35 (5): 0724, 网络出版: 2010-06-03   

二维Kagome格子光子晶体禁带的数值模拟

Numerical Simulation of the Photonic Bandgap of Two-dimensional Photonic Crystals with Kagome Lattice
作者单位
1 太原理工大学材料科学与工程学院,太原 030024
2 太原理工大学应用物理系,太原 030024
摘要
采用平面波展开法模拟计算了由空气背景中的介质柱构成的二维Kagome格子光子晶体的能带结构,得到了使完全光子禁带最大化的结构参量.计算结果表明:由圆形、正六边形和正四边形三种不同形状锗介质柱构成的Kagome格子光子晶体都出现了完全光子禁带,最大禁带分别为△=0.014(ωa/2πc)、△=0.013(ωa/2πc)、△=0.011(ωa/2πc).发现由圆形和正六边形两种介质柱构成的Kagome格子光子晶体在填充比连续变化的较大的范围内都有宽度较为稳定的完全禁带,且它们具有非常相似的能带结构.
Abstract
Plane wave expansion method was employed to simulate the bandgap of 2-D photonic crystals with Kagome lattice. The optimum structural parameters of photonic crystals with the largest complete bandgap were obtained. Complete bandgaps were obtained when the germanium columns were in the shape of circular,hexagonal and square,respectively. It is showed that the complete bandgaps can be attained steadily as the filling fraction is changed in a wide range for circular and hexagonal columns,and their band structures are similar.
参考文献

[1] Yablonovitch E. Inhibited spontaneous emission in solidstate physics and electronics. Phys Rev Lett,1987,58(20) : 2059~2062

[2] John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett,1987,58(23) : 2486~2489

[3] 李岩,郑瑞生,田进寿,等.一种类分形结构光子晶体的能带.光子学报,2004,33(10) :1218~1221

    Li Y,Zheng R S,Tian J S,et al. Acta Photonica Sinica,2004,33(10): 1218~1221

[4] Busch K,John S. Photonic band gap formation in certain self-organizing systems. Phys Rev (E),1998,58(3):3896~3908

[5] Zhang Z,Satpathy S. Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations. Phys Rev Lett,1990,65(21) : 2650~2653

[6] 崔应留,蔡祥宝.缺陷态复周期光子晶体的特性研究.光子学报,2004,33(6) :704~707

    Cui Y L,Cai X B. Acta Photonica Sinica,2004,33(6):704~707

[7] Krauss T F,De La Rue RM,Brand S. Two dimensional photonic-bandgap structures operating at nearinfrared wavelengths. Nature,1996,383(6602):699~702

[8] Mekata M. Kagome: The story of the basketweave lattice. Physics Today,2003,56(2) :12

[9] Balents L,Fisher M P A,Girvin S M. Fractionalization in an easy-axis Kagome antiferromagnet. Phys Rev (B),2002,65(22):224412~223319

[10] Mohan P,Nakajima F,Akabori M,et al. Fabrication of semiconductor Kagome lattice structure by selective area metalorganic vapor phase epitaxy. Applied Physics Letters,2003,83(4): 689~691

[11] Arrachea L,Capriotti L,Sorella S. From the triangular to the kagome lattice: Following the footprints of the ordered state. Phys Rev (B),2004,69 (22) : 224414~224423

[12] Kimura T,Tamura H,Shiraishi K,et al. Magnetic field effects on the ferromagnetism and transport properties of Kagome dot superlattices. Physica (E),2002,12(1):197~199

[13] Benabid F,Knight J C,Antonopoulos G,et al.Stimulated raman scattering in hydrogen-filled hollowcore photonic crystal fiber. Science,2002,298 (5592):399~402

[14] 阮双琛,杨冰,朱春艳,等.2.2W掺Yb3+双包层光子晶体光纤激光器.光子学报,2004,33(1) :15~16

    Ruan S C,Yang B,Zhu C Y,et al. Acta Photonica Sinica,2004,33(1): 15~16

[15] 冯端,金国钧.凝聚态物理学(上卷) .北京:高等教育出版社,2003.163~166

    Feng D,Jin G J. Condensed Matter Physics (Volume I). Beijing: Higher Education Press,2003.163~166

[16] Joannopoulos J D,Meade R D,Winn J N. Photonic crystal: Molding the Flow of Light. NJ: Princeton University Press,1995

[17] Yang X L,Cai L Z,Wang Y R. Larger bandgaps of two-dimensional triangular photonic crystals fabricated by holographic lithography can be realized by recording geometry design. Optics Express,2004,12(24): 5850~5856

杨毅彪, 王云才, 李秀杰, 梁伟. 二维Kagome格子光子晶体禁带的数值模拟[J]. 光子学报, 2006, 35(5): 0724. Yang Yibiao, Wang Yuncai, Li Xiujie, Liang Wei. Numerical Simulation of the Photonic Bandgap of Two-dimensional Photonic Crystals with Kagome Lattice[J]. ACTA PHOTONICA SINICA, 2006, 35(5): 0724.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!