光散射学报, 2019, 31 (1): 11, 网络出版: 2019-04-16   

纳米共振单元阵列的结构色研究进展

Research Progress in Structural Colors of Nano Resonant Cell Arrays
作者单位
华南师范大学物理与电信工程学院, 广州 510006
摘要
纳米结构色是一种可见光与纳米结构相互作用产生的颜色。为了分析不同纳米共振单元阵列对可见光的调控特性, 本文总结了纳米光栅、金属-绝缘体-金属(MIM)、亚波长孔洞阵列、纳米棒阵列和纳米盘-孔洞阵列这几种等离激元结构的显色机理和滤波效果, 同时介绍了纯硅及非纯硅两大类Mie共振纳米结构色。除此以外, 文章还讨论了动态调控结构色的方法和大面积制备纳米结构的方法, 使基于等离激元和Mie共振的结构色能应用于实际。纳米结构有优良的显色效果并能整合到光电器件中, 使其在超高分辨显示、图像信息存储、图像信息加密等领域具备巨大应用潜力。
Abstract
Nanostructural color is produced by the interaction of visible light and nanostructure.In order to analyze different nanometer resonant cell arrays control characteristics for visible light, the paper summarizes the mechanisms and filtering effect of several plasmon structures including: nano-grating, Metal-insulator-Metal(MIM), subwavelength hole arrays, and nano-rod array, the array of nano disc-apertures.At the same time two kinds of Mie resonant nanostructural colors of pure silicon and non-pure silicon are introduced.In addition, the article also discusses the method of dynamic structural color’s realization and the method of nanostructures’ large-area preparation, so that structural color based on plasmon and Mie resonance can be applied to the real world.The nanostructure has excellent color rendering effect and can be integrated into the optoelectronic device, which has great application value in the fields of ultra high resolution display, image information storage and image information encryption.
参考文献

[1] LAWRENCE C, WAKELY G, VUKUSIC P, et al.Sculpted-multilayer optical effects in two species of Papilio butterfly[J].Appl Opt, 2001, 40(7): 1116-1125.

[2] FAN J R, WU W G, CHEN Z J, et al.Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors[J].Nanoscale, 2016, 9(10): 3416-3423.

[3] XUE J, ZHOU Z K, WEI Z, et al.Scalable, full-colour and controllable chromotropic plasmonic printing[J].Nat Commun, 2015, 6: 8906.

[4] KHORASANINEJAD M, ABEDZADEH N, WALIA J, et al.Color matrix refractive index sensors using coupled vertical silicon nanowire arrays[J].Nano Lett, 2012, 12(8): 4228-4234.

[5] DEGIRON A, EBBESEN T W.The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J].J Opt A: Pure Appl Opt, 2005, 7(2): S90.

[6] KUMAR K, DUAN H, HEGDE R S, et al.Printing colour at the optical diffraction limit[J].Nat Nanotechnol, 2012, 7(9): 557-561.

[7] SEO K, WOBER M, STEINVURZEL P, et al.Multicolored vertical silicon nanowires[J].Nano Lett, 2011, 11(4): 1851.

[8] KHORASANINEJAD M, ABEDZADEH N, WALIA J, et al.Color matrix refractive index sensors using coupled vertical silicon nanowire arrays.[J].Nano Lett, 2012, 12(8): 4228-4234.

[9] TSENG M L, YANG J, SEMMLINGER M, et al.Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response[J].Nano Lett, 2017, 17(10): 6034-6039.

[10] FRANKLIN D, FRANK R, WU S T, et al.Actively addressed single pixel full-colour plasmonic display[J].Nat Commun, 2017, 8: 15209.

[11] YOKOGAWA S, BURGOS S P, ATWATER H A.Plasmonic color filters for CMOS image sensor applications[J].Nano Lett, 2012, 12(8): 4349-4354.

[12] ZENG B, GAO Y, BARTOLI F J.Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters[J].Sci Rep, 2013, 3(41): 2840.

[13] KOIRALA I, SHRESTHA V R, PARK C S, et al.Polarization-controlled broad color palette based on an ultrathin one-dimensional resonant grating structure: [J].Sci Rep, 2017, 7: 40073.

[14] KAPLAN A F, XU T, JAY GUO L.High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J].Appl Phys Lett, 2011, 99(14): 824.

[15] DIEST K, DIONNE J A, SPAIN M, et al.Tunable color filters based on metal-insulator-metal resonators.[J].Nano Letters, 2009, 9(7): 2579.

[16] LI Z, BUTUN S, AYDIN K.Large-area, lithography-free superabsorbers and color filters at visible frequencies using ultrathin metallic films[J].ACS Photonics, 2015, 2: 183-188.

[17] XU T, WU Y K, LUO X, et al.Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging.[J].Nat Commun, 2010, 1(5): 59.

[18] WANG H, WANG X, CHEN Y, et al.Full color generation using silver tandem nanodisks[J].Acs Nano, 2017, 11(5): 4419.

[19] GENET C, EBBESEN T W.Light in tiny holes[J].Nature, 2007, 445(7123): 39-46.

[20] CHEN Q, CUMMING D R.High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J].Opt Exp, 2010, 18(13): 14056.

[21] YU H, HAN S, LEE J Y, et al.Visible wavelength color filters using dielectric subwavelength gratings for backside-illuminated CMOS image sensor technologies[J].Nano Lett, 2017, 17(5): 3159-3164.

[22] LEE Y, PARK M K, KIM S, et al.Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J].Acs Photonics, 2017, 4(8): 1954-1966.

[23] CHENG F, GAO J, LUK T S, et al.Structural color printing based on plasmonic metasurfaces of perfect light absorption[J].Sci Rep, 2015, 5: 11045.

[24] JACKSON J D.Classical Electrodynamics[M].New York: Wiley & Sons, 1975.

[25] SI G, ZHAO Y, LV J, et al.Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays.[J].Nanoscale, 2013, 5(14): 6243-6248.

[26] LONG W, QIN C, XIN H, et al.Multi-functional silicon optoelectronics integrated with plasmonic scattering color[J].Acs Nano, 2016, 10(12): 11076-11086.

[27] ELLENBOGEN T, SEO K, CROZIER K B.Chromatic plasmonic polarizers for active visible color filtering and polarimetry[J].Nano Lett, 2012, 12(2): 1026-1031.

[28] TAN S J, ZHANG L, ZHU D, et al.Plasmonic color palettes for photorealistic printing with aluminum nanostructures.[J].Nano Lett, 2014, 14(7): 4023.

[29] GOH X M, ZHENG Y, TAN S J, et al.Three-dimensional plasmonic stereoscopic prints in full colour.[J].Nat Commun, 2014, 5: 5361.

[30] YUE W, GAO S, SANG-SHIN L, et al.Subtractive color filters based on a silicon-aluminum hybrid-nanodisk metasurface enabling enhanced color purity[J].Sci Rep, 2016, 6: 29756.

[31] PROUST J, BEDU F, GALLAS B, et al.All-dielectric colored metasurfaces with silicon Mie resonators[J].Acs Nano, 2017, 10(8): 7761-7767.

[32] FLAURAUD V, REYES M, PANIAGUA-DOMINGUES R, et al.Silicon nanostructures for bright field full color prints[J].Acs Photonics, 2017, 4(8): 1913-1919.

[33] VASHISTHA V, VAIDYA G, HEGDE R S, et al.All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut[J].2017, 4(5): 1076-1082.

[34] LI Z, CLARK A W, COOPER J M.Dual color plasmonic pixels create a polarization controlled nano color palette[J].Acs Nano, 2016, 10(1): 492.

[35] WOOD T, NAFFOUTI M, BERTHELOT J, et al.All-dielectric color filters using sige-based Mie resonator arrays[J].Acs Photonics, 2017, 4(4): 873-883.

[36] SUN S, ZHOU Z, ZHANG C, et al.All-dielectric full-color printing with TiO2 metasurfaces[J].Acs Nano, 2017, 11(5): 4445-4452.

[37] WANG G, CHEN X, LIU S, et al.Mechanical chameleon through dynamic real-time plasmonic tuning[J].Acs Nano, 2016, 10(2): 1788.

[38] DUAN X, KAMIN S, LIU N.Dynamic plasmonic colour display[J].Nat Commun, 2017, 8: 14606.

[39] GUAY J M, LESINA A C, Cté G, et al.Laser-induced plasmonic colours on metals[J].Nat Commun, 2017, 8: 16095.

[40] GUAY J M, LESINA A C, BAXTER J, et al.The coloring and color enhancement of noble metals via multi-burst picosecond pulses[C].Cleo.2017, ATu4C.6.

[41] WANG L, NG R J H, DINACHALI S S, et al.Large area plasmonic color palettes with expanded gamut using colloidal self-assembly[J].Acs Photonics, 2016, 3(4): 627-633.

[42] GALINSKI H, FAVRAUD G, DONG H, et al.Scalable, ultra-resistant structural colors based on network metamaterials[J].Light Sci Appl, 2016, 6: e16233.

[43] FRANKLIN D, CHEN Y, VAZQUEZGUARDADO A, et al.Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces[J].Nat Commun, 2015, 6: 7337.

潘海宁, 陈溢杭. 纳米共振单元阵列的结构色研究进展[J]. 光散射学报, 2019, 31(1): 11. PAN Haining, CHEN Yihang. Research Progress in Structural Colors of Nano Resonant Cell Arrays[J]. The Journal of Light Scattering, 2019, 31(1): 11.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!