强激光与粒子束, 2014, 26 (3): 032007, 网络出版: 2014-03-31   

PMP/Cu泡沫材料中Cu颗粒的三维分布

3D visualization of copper particles doped in poly-4-methyl-1-pentene foams
作者单位
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
摘要
为观测和分析铜掺杂聚-4-甲基-1-戊烯(PMP/Cu)低密度泡沫材料中铜颗粒的三维空间分布,采用高分辨X射线断层扫描技术,扫描PMP/Cu泡沫材料样品,对铜颗粒在聚合物泡沫中的分布进行了成像分析。经过图像处理和三维重构,获得铜颗粒在PMP聚合物泡沫中的三维立体分布图。结果分析显示:铜纳米粒子在PMP泡沫中存在团聚现象;不同尺寸的团聚物形态呈现出明显的多样化特征,小颗粒团聚物趋于球形,大颗粒团聚物趋于不规则的短木棒状,与在电子显微镜下直接观测到的结果一致。研究表明,该技术可以在不破坏样品的前提下,实现对有机聚合物泡沫材料中掺杂金属颗粒空间分布情况的直接观测。
Abstract
In order to investigate the distribution of copper particles in poly-4-methyl-1-pentene (PMP) low density foams, the high resolution X-ray computer tomography was used to scan PMP/Cu samples and the CCD camera to record the images. After image processing and 3D reconstruction, 3D spatial distribution of the copper particles in PMP/Cu foams was obtained. 3D visualization shows that copper particles are aggregated in the PMP foams, copper particle aggregates with different sizes have distinctly different morphologies, that is, small aggregates tend to be spherical while big aggregates are relatively longer and like a short stick, which agrees well with the results obtained by high resolution electron microscopy. The research results show that the high resolution X-ray computer tomography can be used to observe the high Z metal particles doped in low density porous materials without destructing the samples.
参考文献

[1] Lin Li, Shang Ke, Xu Xingtao, et al. Formation of Ag nanoparticle-doped foam-like polymer films at the liquid-liquid interface[J]. The Journal of Physical Chemistry B, 2011, 115:11113-11118.

[2] Chu Chunxiao, Yang Dan, Wang Di, et al. Formation of Au nanoparticle-doped PVK microcapsules and foam-like structures at the liquid/liquid interface[J]. Materials Chemistry and Physics, 2012, 132:916-922.

[3] Ma Huihui, Geng Yuanyuan, Lee Yong-Ill, et al. Interfacial assembly of Pt nanoparticle-doped free-standing polymer foam films and their catalytic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419:201-208.

[4] Elliott N E, Mitchell M A. Characterization of density and metal content in low density foam targets for inertial confinement fusion[J]. Nuclear Instruments and Methods in Physics Research A, 1995, 362:112-113.

[5] Huang Chengwu, Song Tianming, Zhao Yang, et al. Effective opacity for gold-doped foam plasmas[J]. Chin Phys Lett, 2012, 29:095201.

[6] Watari T, Nakai M, Azechi H, et al. Rayleigh-Taylor instability growth on low-density foam targets[J]. Physics of Plasmas, 2008, 15:092109.

[7] Takamatsu K, Ozaki N, Tanaka K A, et al. Equation-of-state measurements of polyimide at pressures up to 5.8 TPa using low-density foam with laser-driven shock waves[J]. Physical Review E, 2003, 67:056406.

[8] Haill T A, Mattsson T R, Root S, et al. Mesoscale simulation of mixed equations of state with application to shocked platinum-doped PMP foams[J]. Procedia Engineering, 2013, 58:309-319.

[9] Hoarty D, Barringer L, Vickers C, et al. Observation of transonic ionization fronts in low-density foam targets[J]. Physical Review Letters, 1999, 82(15):3070-3073.

[10] Hazak G, Velikovich A L, Gardner J H, et al. Shock propagation in a low-density foam filled with fluid[J]. Physics of Plasmas, 1998, 5(12):4357-4365.

[11] 段耀勇,陈志华,郭永辉,等.Ne,Ar,Kr,Xe等离子体Planck和Rosseland平均不透明度的近似计算[J].核聚变与等离子体物理, 2002, 22(3):188-192.(Duan Yaoyong, Chen Zhihua, Guo Yonghui, et al. Approximate calculation of Plank and Rosseland mean opacities of Ne, Ar, Kr, Xe plasmas. Nuclear Fusion and Plasma Physics, 2002, 22(3):188-192)

[12] 杜凯,张林,罗炫.铁掺杂PMP泡沫制备工艺研究[J].强激光与粒子束, 2004, 16(6):737-740.(Du Kai, Zhang Lin, Luo Xuan. Preparation of Fe-doping PMP foam. High Power Laser and Particle Beams, 2004, 16(6):737-740)

[13] 尹强,张林,杜凯,等.掺溴聚-4-甲基-1-戊烯的合成研究[J].强激光与粒子束, 2004, 16(5):627-629.(Yin Qiang, Zhang Lin, Du Kai, et al. Preparation and investigation of brominated poly-4-methyl-1-pentene as target material. High Power Laser and Particle Beams, 2004, 16(5):627-629)

[14] 尹强,张林,罗炫,等.溴掺杂低密度PMP泡沫的制备技术研究[J].强激光与粒子束, 2005, 17(5):700-702.(Yin Qiang, Zhang Lin, Luo Xuan, et al. Synthesis of low-density bromine doped PMP foam. High Power Laser and Particle Beams, 2005, 17(5):700-702)

[15] Du K, Zhang L, Luo X, et al. Structure and properties of PMP foams doped with Cu nanopowders[J]. Journal of Applied Polymer Science, 2006, 102(6):5627-5632.

[16] 方瑜,罗炫,张庆军.低密度PMP聚合物泡沫成型控制[J].强激光与粒子束, 2013, 25(11):2873-2876.(Fang Yu, Luo Xuan, Zhang Qingjun. Fabrication control of low density PMP foams. High Power Laser and Particle Beams, 2013, 25(11):2873-2876)

[17] 张庆军,罗炫,李泽甫,等.μm量级钨掺杂PMP泡沫制备[J].强激光与粒子束, 2013, 25(11):2903-2908.(Zhang Qingjun, Luo Xuan, Li Zefu, et al. Preparation of tungsten doped PMP foams in micron dimension. High Power Laser and Particle Beams, 2013, 25(11):2903-2908)

[18] 张继成,周民杰,罗炫,等.基于高分辨电镜分析Cu掺杂聚-4-甲基-1-戊烯泡沫材料[J].强激光与粒子束, 2011, 23(12):3349-3352.(Zhang Jicheng, Zhou Minjie, Luo Xuan, et al. Characterization of low-density copper doped PMP foam by HREM. High Power Laser and Particle Beams, 2011, 23(12):3349-3352)

[19] Li X, Lin C, Miller J, et al. Pore-scale observation of microsphere deposition at grain to grain contacts over assemblage-scale porous media domains using X-ray microtomography[J]. Environmental Science and Technology, 2006, 40(12):3762-3768.

[20] Spanne P, Thovert J, Jacquin C, et al. Synchrotron computed microtomography of porous media: topology and transports[J]. Physical Review Letters, 1994, 73(14):2001-2004.

[21] Wildenschild D, Hopmans J, Rivers M, et al. Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography[J]. Vadose Zone Journal, 2005, 4(1):112-126.

[22] Merkle A P, Gelb J. The ascent of 3D X-ray microscopy in the laboratory[J]. Microscopy Today, 2013, 3:10-15.

[23] 韦建军,李朝阳,唐永建,等.自悬浮定向流法制备纳米铜微粒及其结构表征[J].强激光与粒子束, 2003, 15(4):359-362.(Wei Jianjun, Li Chaoyang, Tang Yongjian, et al. Preparation and structure of nanocopper particles by flow-levitation method. High Power Laser and Particle Beams, 2003, 15(4):359-362)

[24] 楚广,熊志群,刘伟,等.自悬浮定向流法制备纳米Cu粉的微结构和性能表征[J].中国有色金属学报, 2007, 17(4):623-628.(Chu Guang, Xiong Zhiqun, Liu Wei, et al. Microstructure and properties of nano-copper powders prepared by flow-levitation method. The Chinese Journal of Nonferrous Metals, 2007, 17(4):623-628)

[25] Singhai A, Grande J C, Zhou Y. Micro/Nano-CT for visualization of internal structures[J]. Microscopy Today, 2013, 3:16-22.

[26] Feser M, Gelb J, Chang H, et al. Sub-micron resolution CT for failure analysis and process development[J]. Measurement Science and Technology, 2008, 19:1-8.

张继成, 汪卓, 罗炫. PMP/Cu泡沫材料中Cu颗粒的三维分布[J]. 强激光与粒子束, 2014, 26(3): 032007. Zhang Jicheng, Wang Zhuo, Luo Xuan. 3D visualization of copper particles doped in poly-4-methyl-1-pentene foams[J]. High Power Laser and Particle Beams, 2014, 26(3): 032007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!