Matter and Radiation at Extremes, 2017, 2 (1): 28, Published Online: Jan. 17, 2018  

On intense proton beam generation and transport in hollow cones

Author Affiliations
1 ETSI Aeronautica y del Espacio, Universidad Politecnica de Madrid, Madrid, Spain
2 Institute of Laser Engineering, Osaka University, Osaka, Japan
Abstract
Proton generation, transport and interaction with hollow cone targets are investigated by means of two-dimensional PIC simulations. A scaled-down hollow cone with gold walls, a carbon tip and a curved hydrogen foil inside the cone has been considered. Proton acceleration is driven by a 1020 W?cm2 and 1 ps laser pulse focused on the hydrogen foil. Simulations show an important surface current at the cone walls which generates a magnetic field. This magnetic field is dragged by the quasi-neutral plasma formed by fast protons and co-moving electrons when they propagate towards the cone tip. As a result, a tens of kT Bz field is set up at the cone tip, which is strong enough to deflect the protons and increase the beam divergence substantially. We propose using heavy materials at the cone tip and increasing the laser intensity in order to mitigate magnetic field generation and proton beam divergence.
References

[1] U. Linz, J. Alonso, What will it take for laser driven proton accelerators to be applied to tumor therapy Phys. Rev. STAB 10 (2007) 094801 http://dx.doi.org/10.1103/PhysRevSTAB.10.094801.

[2] S. Palaniyappan, C. Huang, D.C. Gautier, C.E. Hamilton, M.A. Santiago, et al., Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas, Nat. Commun. 6 (2015) 10170, http://dx.doi.org/ 10.1038/ncomms10170.

[3] M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, et al., Ignition and high gain with ultrapowerful lasers, Phys. Plasmas 1 (1994) 1626, http://dx.doi.org/10.1063/1.870664.

[4] M. Tabak, D. Callahan-Miller, Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams, Nucl. Instr. Meth. 415 (1998) 75, http://dx.doi.org/10.1016/S0168-9002(98)00371-4.

[5] R.A. Snavely,M.H. Key, S.P. Hatchett, T.E. Cowan, M. Roth, et al., Intense high-energy proton beams from petawatt-laser irradiation of solids, Phys. Rev. Lett. 85 (2000) 2495, http://dx.doi.org/10.1103/PhysRevLett.85.2945.

[6] M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436, http://dx.doi.org/10.1103/PhysRevLett.86.436.

[7] P. Mora, Plasma expansion into a vacuum, Phys. Rev. Lett. 90 (2003) 185002, http://dx.doi.org/10.1103/PhysRevLett.90.185002.

[8] M. Murakami, M.M. Basko, Self-similar expansion of finite-size nonquasi- neutral plasmas into vacuum: Relation to the problem of ion acceleration, Phys. Plasmas 13 (2006) 012105, http://dx.doi.org/10.1063/ 1.2162527.

[9] S. Hatchett, O.S. Jones, M. Tabak, R.E. Turner, R.B. Stephens, Conefocused fast ignition: Sub-ignition proof-of-principle experiments, in: M. Key (Ed.), Contribution to the 6th Workshop on Fast Ignition of Fusion Targets, 16e19 November 2002, St. Petes Beach, Florida, USA, 2002.

[10] S. Atzeni, M. Temporal, J.J. Honrubia, A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons, Nucl. Fus. 42 (2002) L1, http://dx.doi.org/10.1088/0029-5515/42/3/101.

[11] M. Temporal, J.J. Honrubia, S. Atzeni, Numerical study of fast ignition of ablatively imploded deuteriumtritium fusion capsules by ultra-intense proton beams, Phys. Plasmas 9 (2002) 3098, http://dx.doi.org/10.1063/ 1.1482375.

[12] M. Temporal, Fast ignition of a compressed inertial confinement fusion hemispherical capsule by two proton beams, Phys. Plasmas 13 (2006) 122704, http://dx.doi.org/10.1063/1.2400592.

[13] M. Temporal, J.J. Honrubia, S. Atzeni, Proton-beam driven fast ignition of inertially confined fuels: Reduction of the ignition energy by the use of two proton beams with radially shaped profiles, Phys. Plasmas 15 (2008) 025702, http://dx.doi.org/10.1063/1.2918316.

[14] J.J. Honrubia, J.C. Fern andez, B.M. Hegelich,M.Murakami, C.D. Enriquez, Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array, Laser Part. Beams 32 (2014) 419, http://dx.doi.org/10.1017/S0263034614000305.

[15] J.C. Fern andez, J.J. Honrubia, B.J. Albright, K.A. Flippo, D.C. Gautier, et al., Progress and prospects of ion-driven fast ignition, Nucl. Fus. 49 (2009) 065004, http://dx.doi.org/10.1088/0029-5515/49/6/065004.

[16] J.J. Honrubia, J.C. Fern andez, M. Temporal, B.M. Hegelich, J. Meyerter- Vehn, Fast ignition of inertial fusion targets by laser-driven carbon beams, Phys. Plasmas 16 (2009) 102701, http://dx.doi.org/10.1063/ 1.3234248.

[17] C.M. Brenner, A.P.L. Robinson, K. Markey, R.H.H. Scott, R.J. Gray, et al., High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets, App. Phys. Lett. 104 (2014) 081123, http://dx.doi.org/10.1063/1.4865812.

[18] J.C. Fern andez, B.J. Albright, F.N. Beg, M.E. Foord, B.M. Hegelich, et al., Fast ignition with laser-driven proton and ion beams, Nucl. Fus. 54 (2014) 054006, http://dx.doi.org/10.1088/0029-5515/54/5/054006.

[19] J.J. Honrubia, M. Murakami, Ion beam requirements for fast ignition of inertial fusion targets, Phys. Plasmas 22 (2015) 012703, http://dx.doi.org/ 10.1063/1.4905904.

[20] J. Kim, B. Qiao, C. McGuffey, M.S. Wei, P.E. Grabowski, et al., Selfconsistent simulation of transport and energy deposition of intense laseraccelerated proton beams in solid-density matter, Phys. Rev. Lett. 115 (2015) 054801, http://dx.doi.org/10.1103/PhysRevLett.115.054801.

[21] P.K. Patel, A.J. Mackinnon, M.H. Key, T.E. Cowan, M.E. Foord, et al., Isochoric heating of solid-density matter with an ultrafast proton beam, Phys. Rev. Lett. 91 (2008) 125004, http://dx.doi.org/10.1103/ PhysRevLett.91.125004.

[22] M.H. Key, Status of and prospects for the fast ignition inertial fusion concept, Phys. Plasmas 14 (2007) 055502, http://dx.doi.org/10.1063/ 1.2719178.

[23] M. Schollmeier, S. Becker, M. Geissel, K.A. Flippo, A. Blazevic, et al., Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices, Phys. Rev. Lett. 101 (2008) 055004, http:// dx.doi.org/10.1103/PhysRevLett.101.055004.

[24] K. Harres, I. Alber, A. Tauschwitz, V. Bagnoud, H. Daido, et al., Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field, Phys. Plasmas 17 (2010) 023107, http://dx.doi.org/ 10.1063/1.3299391.

[25] I. Hofmann, J. Meyer-ter-Vehn, X. Yan, A. Orzhekhovskaya, S. Yaramyshev, Collection and focusing of laser accelerated ion beams for therapy applications, Phys. Rev. ST Accel. Beams 14 (2011) 031304, http://dx.doi.org/10.1103/PhysRevSTAB.14.031304.

[26] T. Toncian, M. Borghesi, J. Fuchs, E. d'Humi eres, P. Antici, et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312 (2006) 410, http://dx.doi.org/10.1126/ science.1124412.

[27] S. Kar, K. Markey, P.T. Simpson, C. Bellei, J.S. Green, et al., Dynamic control of laser-produced proton beams, Phys. Rev. Lett. 100 (2008) 105004, http://dx.doi.org/10.1103/PhysRevLett.100.105004.

[28] D.T. Offermann, K.A. Flippo, J. Cobble, M.J. Schmitt, S.A. Gaillard, et al., Characterization and focusing of light ion beams generated by ultraintensely irradiated thin foils at the kilojoule scale, Phys. Plasmas 18 (2011) 056713, http://dx.doi.org/10.1063/1.3589476.

[29] T. Bartal, M.E. Foord, C. Bellei, M.H. Key, K.A. Flippo, et al., Focusing of short-pulse high-intensity laser-accelerated proton beams, Nat. Phys. 8 (2012) 139, http://dx.doi.org/10.1038/nphys2153.

[30] T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, et al., Contemporary particle-in-cell approach to laserplasma modelling, Plasma Phys. Control. Fus. 57 (2015) 113001, http://dx.doi.org/10.1088/0741-3335/57/11/113001.

[31] M.H. Key, R.R. Freeman, S.P. Hatchett, A.J. MacKinnon, P.K. Patel, et al., Proton fast ignition, Fus. Sci. Tecnol. 49 (2006) 440.

[32] M.E. Foord, T. Bartal, C. Bellei, M. Key, K. Flippo, et al., Proton trajectories and electric fields in a laser-accelerated focused proton beam, Phys. Plasmas 19 (2012) 056702, http://dx.doi.org/10.1063/1.3700181.

[33] B. Qiao, M.E. Foord, M.S. Wei, R.B. Stephens, M.H. Key, et al., Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers, Phys. Rev. E 87 (2013) 013108, http://dx.doi.org/10.1103/PhysRevE.87.013108.

[34] D.B. Zou, H.B. Zhuo, X.H. Yang, T.P. Yu, F.Q. Shao, et al., Control of target-normal-sheath-accelerated protons from a guiding cone, Phys. Plasmas 22 (2015) 063103, http://dx.doi.org/10.1063/1.4922053.

[35] A. Morace, Fast Ignition: Limits of the Classic Method and Alternative Approaches, Presented at the 14th International Workshop on Fast Ignition and High Field Physics with High Power Lasers, May 17e20, PACIFICO, Yokohama, Japan, 2016.

[36] L. Yin, B.J. Albright, B.M. Hegelich, J.C. Fern andez, GeV laser ion acceleration from ultrathin targets: the laser break-out afterburner, Laser Part. Beams 24 (2006) 291, http://dx.doi.org/10.1017/S0263034606060459.

[37] A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei, Radiation pressure acceleration of thin foils with circularly polarized laser pulses, New J. Phys. 10 (2008) 013021, http://dx.doi.org/10.1088/1367-2630/10/ 1/013021.

J.J. Honrubia, A. Morace, M. Murakami. On intense proton beam generation and transport in hollow cones[J]. Matter and Radiation at Extremes, 2017, 2(1): 28.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!