光学 精密工程, 2018, 26 (1): 55, 网络出版: 2018-03-14   

基于Yb∶YAG/Cr4+∶YAG/YAG键合晶体的被动调Q激光器

Passively Q-switched laser with a Yb∶YAG/Cr4+∶YAG/YAG composite crystal
作者单位
1 顺德职业技术学院 电子与信息工程学院, 广东 佛山 528300
2 暨南大学 光电工程研究所, 广东 广州 510632
摘要
为了研究键合晶体在被动调Q激光器上的应用优势, 采用Yb∶YAG/Cr4+∶YAG/YAG键合晶体搭建了紧凑的端面泵浦被动调Q激光器, 获得了高效的1 030 nm和515 nm脉冲激光。实验研究了泵浦功率和初始透过率T0对各项激光性能的影响, 结果在T0=95%时得到了平均功率为1.97 W的1 030 nm激光, 对应33%的斜效率, 而当T0=85%时输出的1 030 nm脉冲峰值功率高达87 kW, 脉冲宽度低至3.14 ns。另外在与LBO的倍频实验中, 用T0=90%的键合晶体获得了较高的绿光输出功率634 mW, 对应11.2%的斜效率和15 ns的脉冲宽度。最后还研究了光谱的红移和输出镜的漏光现象, 找出进一步提高绿光功率的方法。
Abstract
In order to research the applied advantages of composite crystals to the passively Q-switched lasers, a compact diode-end-pumped passively Q-switched laser was built up with a Yb∶YAG/Cr4+∶YAG/YAG composite crystal for generating efficient 1 030 nm and 515 nm pulsed lasers. The effects of pump power and initial transmission T0 on the laser properties were studied. As a result, a 1 030 nm laser with an average power of 1.97 W is obtained at T0 of 95% with slope efficiency of 33%, and the pulse peak power reaches to 87 kW at T0 of 85% with pulse width of 3.14 ns. In addition, in the frequency-doubled experiment with LBO, a green laser with higher output power of 634 mW is obtained at T0 of 90% with slope efficiency of 11.2% and pulse width of 15 ns. Finally, the red shift of spectrum and the leakage of output mirror were studied, as well as the method for increasing output power of green laser.
参考文献

[1] LEE H C, BROWNLIE P L, MEISSNER H E, et al.. Diffusion-bonded composites of YAG single crystals [J]. SPIE, 1991, 1624: 2-10.

[2] MIAO J G, WANG B SH, PENG J Y, et al.. Efficient diode-pumped passively Q-switched laser with Nd∶YAG/Cr∶YAG composite crystal [J]. Optics & Laser Technology, 2008, 40(1): 137-141.

[3] TSUNEKANE M, TAIRA T. Long time operation of composite ceramic Nd∶YAG/Cr∶YAG micro-chip lasers for ignition[C]. Laser Ignition Conference, Optical Society of America, 2015: T4A.3.

[4] ZHU S Q, WANG S E, CHEN Z Q, et al.. High-power passively Q-switched 532 nm green laser by using Nd∶YAG/Cr4+∶YAG composite crystal [J]. Laser Physics, 2012, 22(6): 1011-1014.

[5] JIANGW, ZHU S Q, CHEN X ZH, et al.. Compact passively Q-switched Raman laser at 1 176 nm and yellow laser at 588 nm using Nd3+∶YAG/Cr4+∶YAG composite crystal [J]. Applied Optics, 2014, 53(7): 1328-1332.

[6] SONGJ, LI CH, UEDA K I. Thermal influence of saturable absorber in passively Q-switched diode-pumped cw Nd∶YAG/Cr4+∶YAG laser [J]. Optics Communications, 2000, 177(1-6): 307-316.

[7] JIANG W, ZHU S, CHEN ZH Q, et al.. Green laser with v-shaped resonant cavity based on Nd∶YAG/Cr4+∶YAG/YAG composite crystal rod [J]. Journal of Applied Spectroscopy, 2013, 80(5): 694-697.

[8] ZHU S Q, CHEN Z J, CHEN ZH Q, et al.. Diode-side-pumped passively Q-switched mode-locked 532 nm laser with a Nd∶YAG/Cr4+∶YAG/YAG composite crystal [J]. Journal of Russian Laser Research, 2013, 34(6): 575-580.

[9] CHEN Z J, ZHU S Q, CHEN Y J, et al.. Comparison of passively Q-switched LD side-pumped green laser by using Nd3+∶YAG/Cr4+∶YAG/YAG composite crystals of different initial transmissions [J]. Optics & Laser Technology, 2013, 54: 362-366.

[10] WANG S, ZHU S Q, CHEN ZH Q, et al.. High average power, side-pumped passively Q-switched laser of 1 064 nm by using composite crystal Nd∶YAG/Cr4+∶YAG/YAG [J]. Journal of Optics, 2014, 43(3): 183-187.

[11] ZHU S Q, HE Q, WANG S, et al.. High average power passively Q-switched laser diode side-pumped green laser by using Nd∶YAG/Cr4+∶YAG/YAG composite crystal [J]. Journal of Laser Applications, 2014, 26(3): 032009.

[12] ZHU S Q, CHEN Z J, CHEN ZH Q, et al.. A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd∶YAG/Cr4+∶YAG/YAG composite crystal [J]. Optics & Laser Technology, 2014, 63: 24-28.

[13] ZHU S Q, ZHOU H Q, JIANG W, et al.. Compact and efficient passively Q-switched laser at 473 nm with an Nd∶YAG/YAG/Cr4+∶YAG/YAG multifunctional composite crystal [J]. Applied Optics, 2016, 55(15): 4166-4169.

[14] DONG J, DENG P ZH, LIU Y P, et al.. Passively Q-switched Yb∶YAG laser with Cr4+∶YAG as the saturable absorber [J]. Applied Optics, 2001, 40(24): 4303-4307.

[15] BIBEAU C, BEACH R J, MITCHELL S C, et al.. High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb∶YAG laser [J]. IEEE Journal of Quantum Electronics, 1998, 34(10): 2010-2019.

[16] TSUNEKANE M, TAIRA T. High peak power, passively Q-switched Yb∶ YAG/Cr micro-lasers [J]. IEEE Journal of Quantum Electronics, 2013, 49(5): 454-461.

[17] DONG J, REN Y Y, CHENG H H. >1 MW peak power, an efficient Yb∶YAG/Cr4+∶YAG composite crystal passively Q-switched laser [J]. Laser Physics, 2014, 24(5): 055801.

[18] JIANG W, LIU Y M, CHEN W D, et al.. Composite Yb∶YAG/Cr4+∶ YAG/YAG crystal passively Q-switched lasers at 1030 nm [J]. Applied Optics, 2015, 54(7): 1834-1838.

[19] YE P P, ZHU S Q, LI ZH, et al.. Passively Q-switched dual-wavelength green laser with an Yb∶ YAG/Cr4+∶YAG/YAG composite crystal [J]. Optics Express, 2017, 25(5): 5179-5185.

[20] BRUESSELBACH H W, SUMIDA D S, REEDER R A, et al.. Low-heat high-power scaling using InGaAs-diode-pumped Yb∶YAG lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1): 105-116.

[21] LACOVARA P, CHOI H K, WANG C A, et al.. Room-temperature diode-pumped Yb∶YAG laser [J]. Optics Letters, 1991, 16(14): 1089-1091.

[22] 姚建铨, 徐德刚. 全固态激光及非线性光学频率变换技术 [M]. 北京: 科学出版社, 2007: 652-659.

    YAO J Q, XU D G. All Solid State Laser and Nonlinear Optical Frequency Conversion Technology [M]. Beijing: Science Press, 2007: 652-659. (in Chinese)

[23] KOERNER J, VORHOLT C, LIEBETRAU H, et al.. Measurement of temperature-dependent absorption and emission spectra of Yb∶ YAG, Yb∶ LuAG, and Yb∶CaF2 between 20 ℃ and 200 ℃ and predictions on their influence on laser performance [J]. Journal of the Optical Society of America B, 2012, 29(9): 2493-2502.

李景照, 陈振强, 朱思祁. 基于Yb∶YAG/Cr4+∶YAG/YAG键合晶体的被动调Q激光器[J]. 光学 精密工程, 2018, 26(1): 55. LI Jing-zhao, CHEN Zhen-qiang, ZHU Si-qi. Passively Q-switched laser with a Yb∶YAG/Cr4+∶YAG/YAG composite crystal[J]. Optics and Precision Engineering, 2018, 26(1): 55.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!