红外与毫米波学报, 2015, 34 (4): 420, 网络出版: 2015-10-22  

Compensating the effects of DC bias lines on terahertz photomixer antennas using resistively loaded lines

Compensating the effects of DC bias lines on terahertz photomixer antennas using resistively loaded lines
作者单位
Electrical and Electr onics Engineering Department, Yildirim Beyazit University, Ankara, Turkey Cankiri Caddesi, Cicek Sokak, No: 3, Ulus, Ankara, 06030, Turkey
摘要
Abstract
This paper proposed a method, namely resistively loaded lines (RLL), to compensate the effects of the DC bias lines after investigating its effects on several types of antennas for terahertz photomixers. The RLL is formed by placing lumped resistances periodically on the DC bias line in order to cease the leakage current virtually, which cause a significant amount of distortion on the antenna performance. The simulation results of the dipole, folded dipole, log-periodic, and spiral antennas show that RLL almost removes the effects of the bias lines and improves the antenna radiation resistance and radiation pattern notably compared with that of the commonly used bias line types, such as coplanar stripline and photonic bandgap type bias lines.
参考文献

[1] Smith P R, Auston D H, Nuss M C. Subpicosecond photoconducting dipole antennas [J]. IEEE J. Quantum Electron., 1988, 24(2): 255.

[2] Exter M V, Grischkowsky D. Characterization of an optoelectronic terahertz beam system [J]. IEEE Trans. Microw. Theory Tech., 1990, 38(11): 1684-8.

[3] Hu B B, Nuss M C. Imaging with terahertz waves [J]. Opt. Lett., 1995, 20(16): 1716-3.

[4] Mittleman D M, Jacobsen R H, Nuss M C. T-ray imaging [J]. IEEE J. Sel. Topics Quantum Electron., 1996, 2(3): 679-14.

[5] Markelz A, Whitmire S, Hillebrecht J, Birge R. THz time domain spectroscopy of biomolecular conformational modes [J]. Phys. Med. Biol., 2002, 47(21): 3739-67.

[6] Zeitler J A, Taday P F, Newnham D A, Pepper M, Gordon KC, Rades T. Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting-a review [J]. J. Pharm. Pharmacol., 2007, 59(2): 209-25.

[7] Rowe D G. Terahertz takes to the stage [J]. Nature Photon., 2007, 1: 75-3.

[8] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photon., 2007, 1: 97-9.

[9] Mukherjee P, Gupta B. Terahertz (THz) frequency sources and antennas-A brief review [J]. Int. J. Infrared Milli., 2008, 29 (12): 1091-12.

[10] Siegel P H. Terahertz technology [J]. IEEE Trans. Microw. Theory Tech., 2002, 50(3): 910-19.

[11] Ferguson B, Zhang X C. Materials for terahertz science and technology [J]. Nature Materials., 2002, 1: 26-8.

[12] Berry C W, Wang N, Hashemi M R, Unlu M, Jarrahi M. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes [J]. Nature Commun., 2013, 4: 1622-11.

[13] Nguyen T K, Kim S, Rotermund F, Park I. Design of a wideband continuous-wave photomixer antenna for terahertz wireless communication systems [J]. J. Electromagn. Waves Appl., 2014, 28(8): 976-13.

[14] Diao J M, Du L, Ouyang J, Yang P, Nie Z P. Enhanced center frequency of terahertz pulse emission from photoconductive antenna [J]. J. Electromagn. Waves Appl., 2011, 25(16): 2236-8.

[15] Brown E, Smith F, McIntosh K. Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors [J]. J. Appl. Phys., 1993, 73(3): 1480-5.

[16] Matsuura S, Tani M, Sakai K. Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas [J]. Appl. Phys. Lett., 1997, 70(5): 559-3.

[17] Peytavit E, Mouret G, Lampin J, Arscott S, Masselin P, Desplanque L, Vanb esien O, Bocquet R, Mollot F, Lippens D. Terahertz electromagnetic generation via optical frequency difference [J]. P. IEEE-Optoelectron., 2002, 149(3); 82-6.

[18] Nguyen T K, Ho T A, Park I, Han H. Full-wavelength dipole antenna on a GaAs membrane covered by a frequency selective surface for a terahertz photomixer [J]. Prog. Electromagn. Res., 2012, 131: 441-15.

[19] Mandviwala T, Lail B, Boreman G. Infrared-frequency coplanar striplines: design, fabrication, and measurements [J]. Microw. Opt. Technol. Lett., 2005, 47(1): 17-3.

[20] Nguyen T K, Park I. Effects of antenna design parameters on the characteristics of a terahertz coplanar stripline dipole antenna [J]. Prog. Electromagn. Res. M., 2013, 28: 129-15.

[21] Han K, Nguyen T K, Park I, Han H. Terahertz Yagi-Uda antenna for high input resistance [J]. Int. J. Infrared Milli., 2010, 31(4): 441-14.

[22] Duffy S M, Verghese S, McIntosh K A, Jackson A, Gossard AC, Matsuura S. Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power [J]. IEEE Trans. Microw. Theory Tech., 2001, 49(6): 1032-7.

[23] Zhu N, Ziolkowski R W. Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency [J]. IEEE Trans. THz Sci. Technol., 2013, 3(6): 721-10.

[24] Balanis C A. Antenna Theory: Analysis and Design [M]. New Jersey, USA: Wiley, 1997.

[25] High frequency structural simulator. Pittsburgh (PA): Ansoft Corp; 2010.

[26] Collin R E. Foundation for Microwave Engineering [M]. New York, USA: IEEE Press, 2011.

[27] Akalin T, Laso M A G, Lopetegi T, Vanbesien O, Sorolla M, Lippens D. PBG-type microstrip filters with one and two-sided patterns [J]. Microw. Opt. Technol. Lett., 2001, 30(1): 69-4.

[28] Zohur A, Mopidevi H, Rodrigo D, Unlu M, Jofre L, Cetiner B A. RF MEMS reconfigurable two-band antenna [J]. IEEE Antennas Wireless Propag. Lett., 2013, 12: 72-4.

[29] Unlu M, Damgaci Y, Mopidevi H S, Kaynar O, Cetiner B A. Reconfigurable, tri-band RF MEMS PIFA antenna [J]. P. IEEE Int. AP-S Symp., 2011.

[30] Miyamaru F, Saito Y, Yamamoto K, Furuya T, Nishizawa S, Tani M. Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas [J]. Appl. Phys. Lett., 2010, 96(21): 211104-3.

[31] Dragoman D, Dragoman M. Terahertz fields and applications [J]. Prog. Quant. Electron., 2004, 28(1): 1-67.

[32] Ryu H C, Kim S I, Kwak M H, Kang K Y, Park S O. A folded dipole antenna having extremely high input impedance for continuous-wave terahertz power enhancement. P. IRMMW- THz., 2008.

[33] Gitin M M, Wise F W, Arjavalingam G, Pastol Y, Compton R C. Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling [J]. IEEE Trans. Antennas Propag., 1994, 42(3): 335-5.

[34] Mendis R, Sydlo C, Sigmund J, Feiginov M, Meissner P, Hartnagel H L. Tunable CW-THz system with a log-periodic photoconductive emitter [J]. Solid-State Electron., 2004, 48(10): 2041-5.

[35] Sizov F, Rogalski A. THz detectors [J]. Prog. Quant. Electron., 2010, 34(5): 278-70.

[36] Gregory I S, Baker C, Tribe W R, Bradley I V, Evans M J, Linfield E H, Davies A G, Missous M. Optimization of photomixers and antennas for continuous-wave terahertz emission [J]. IEEE J. Quant. Electron., 2005, 41(5): 717-12.

[37] Yang Y, Singh R, Zhang W. Anomalous terahertz transmission in bow-tie plasmonic antenna apertures [J]. Opt. Lett., 2011, 36(15): 2901-3.

[38] Gu J, Han J, Lu X, Singh R, Tian Z, Xing Q, Zhang W. A close-ring pair terahertz metamaterial resonating at normal incidence [J]. Opt. Express., 2009, 17(22): 20307-6.

[39] Focardi P, McGrath W R, Neto A. Design guidelines for terahertz mixers and detectors [J]. IEEE Trans. Microw. Theory Tech., 2005, 53(5): 1653-9.

[40] Nguyen T K, Park I. Impact of varying the DC bias stripline connection angle on terahertz coplanar stripline dipole antenna characteristics [J]. J. Electromagn. Waves Appl., 2013, 27(14): 1725-10.

[41] Guo B, Wen J H, Zhang H C, Zhong W B, Lin W Z. Terahertz dispersion and attenuation characteristics of optically excited coplanar striplines on LT-GaAs [J]. J. Infrared Millim. W., 2000, 19(2): 98-102.

Adem Yilmaz, Mehmet Unlu. Compensating the effects of DC bias lines on terahertz photomixer antennas using resistively loaded lines[J]. 红外与毫米波学报, 2015, 34(4): 420. Adem Yilmaz, Mehmet Unlu. Compensating the effects of DC bias lines on terahertz photomixer antennas using resistively loaded lines[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 420.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!