激光与光电子学进展, 2019, 56 (4): 041402, 网络出版: 2019-02-25   

42CrMo合金表面单道轨迹激光熔覆工艺研究 下载: 793次

Laser Cladding Process of 42CrMo Surface with Single-Pass
作者单位
1 江南大学江苏省食品先进制造装备技术重点实验室, 江苏 无锡 214122
2 苏州出入境检验检疫局, 江苏 苏州 215021
摘要
采用正交试验研究了42CrMo合金表面单道轨迹激光熔覆的Stellite6涂层,分析了激光功率、扫描速度、送粉速率、光斑直径对熔覆层稀释率和显微硬度的影响及主要影响因素之间的交互作用。结果表明,激光功率对熔覆层稀释率的影响最大,而扫描速度对熔覆层显微硬度的影响最大。综合熔覆层稀释率和显微硬度的评价得到的最优工艺参数组合为激光功率1100 W,扫描速度8 mm·s-1,送粉速率1.2~1.4 rad·min-1,光斑直径3.7 mm。
Abstract
The orthogonal test of laser cladding of Stellite6 coating on the 42CrMo alloy surface with single-pass is carried out and the influences of laser power, scanning speed, powder feeding rate and spot diameter on the dilution rate and microhardness of cladding layers as well as the interactive action among the main influencing factors are analyzed. The results show that the laser power has the most significant influence on the dilution rate of cladding layer, while the scanning speed has the most obvious influence on the microhardness of cladding layer. The optimal process parameter combination is laser power of 1100 W, scanning speed of 8 mm·s-1, powder feeding rate of 1.2-1.4 rad·min-1 and spot diameter of 3.7 mm from the comprehensive analysis of the dilution rate and microhardness of cladding layers.
参考文献

[1] 陈江, 刘玉兰. 激光再制造技术工程化应用[J]. 中国表面工程, 2006, 19(5): 50-55.

    Chen J, Liu Y L. The engineering application of laser remanufacturing technology[J]. China Surface Engineering, 2006, 19(5): 50-55.

[2] 邓志强, 石世宏, 周斌, 等. 不等高弯曲弧形薄壁结构激光熔覆成形[J]. 中国激光, 2017, 44(9): 0902005.

    Deng Z Q, Shi S H, Zhou B, et al. Laser cladding forming of unequal-height curved arc-shaped thin-wall structures[J]. Chinese Journal of Lasers, 2017,44(9): 0902005.

[3] 翟建华, 刘志杰, 张勇, 等. 内缸活塞杆的激光熔覆修复[J]. 激光与光电子学进展, 2017, 54(11): 111411.

    Zhai J H, Liu Z J, Zhang Y, et al. Laser cladding reparation of inner cylinder piston rods[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111411.

[4] 宫新勇, 高士友, 咸士玉, 等. 基于温度特征的单道激光熔覆翘曲变形[J]. 激光与光电子学进展, 2017, 54(10): 101410.

    Gong X Y, Gao S Y, Xian S Y, et al. Warp deformation in single-track laser cladding based on temperature characteristics[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101410.

[5] 张文韬. 铝合金挤压成形技术及表面处理、阳极氧化与喷涂、焊接新工艺和挤压设备、模具设计制造实用手册[M]. 宁夏: 宁夏大地出版社, 2007: 12-20.

    Zhang W T. Aluminum alloy extrusion technology and surface treatment, anodizing and spraying, new welding process and extrusion equipment, mold design and manufacturing practical manual[M]. Ningxia: Ningxia Dadi Publishing House, 2007: 12- 20.

[6] 庄光山, 李丽, 王海庆, 等. 金属表面涂装技术[M]. 北京: 化学工业出版社, 2010: 27- 32.

    Zhuang G S, Li L, Wang H Q, et al. Metal surface coating technology[M]. Beijing: Chemical Industry Press, 2010: 27-32.

[7] Ocelik V, de Oliveira U, de Hosson J T M. Metallic laser clad coatings: On the processing-microstructure-property relationships[C]∥WIT Transactions on Engineering Sciences. Southampton,UK: WIT Press, 2009, 62: 39-50.

[8] Cheng Y H, Cui R, Wang H Z, et al. Effect of processing parameters of laser on microstructure and properties of cladding 42CrMo steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5/6/7/8): 1715-1724.

[9] 成诚, 赵剑峰, 田宗军, 等. 激光功率对激光熔覆Ni包WC涂层组织与性能的影响[J]. 南京航空航天大学学报, 2016, 48(6): 890-894.

    Cheng C, Zhao J F, Tian Z J, et al. Effects of laser power on microstructure and properties of laser cladding Ni coated WC layer[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(6): 890-894.

[10] 李铸国, 黄坚, 王亚平, 等. 温度场监控下高功率半导体激光熔敷钴基合金涂层[J]. 红外与激光工程, 2010, 39(2): 311-314.

    Li Z G, Huang J, Wang Y P, et al. High power diode laser cladding of Co-based alloy coating under temperature field control[J]. Infrared and Laser Engineering, 2010, 39(2): 311-314.

[11] 林文松, 张光钧, 王慧萍. 激光熔覆技术的研究进展[J]. 热处理技术与装备, 2008, 29(2): 1-3, 7.

    Lin W S, Zhang G J, Wang H P. Development of laser cladding technology[J]. Heat Treatment Technology and Equipment, 2008, 29(2): 1-3, 7.

[12] 张庆茂, 刘文今, 钟敏霖. 送粉激光熔覆熔池深度解析模型的误差分析[J]. 金属热处理, 2003, 28(4): 11-15.

    Zhang Q M, Liu W J, Zhong M L. Error analysis on the analytical model of pool depth formed by the powder feeding laser cladding[J]. Heat Treatment of Metals, 2003, 28(4): 11-15.

[13] de Oliveira U, Ocelík V, de Hosson J T M. Analysis of coaxial laser cladding processing conditions[J]. Surface & Coatings Technology, 2005,197(2/3): 127-136.

[14] 黄凤晓, 江中浩, 张健. 激光熔覆工艺参数对单道熔覆层宏观尺寸的影响[J]. 热加工工艺, 2010, 39(18): 119-121.

    Huang F X, Jiang Z H, Zhang J. Effects of laser cladding parameters on macro-dimensions of laser cladding layer[J]. Hot Working Technology, 2010, 39(18): 119-121.

[15] 卢长亮, 胡芳友, 崔爱永, 等. 变形铝合金激光熔覆工艺研究[J]. 中国表面工程, 2007, 20(6): 44-47.

    Lu C L, Hu F Y, Cui A Y, et al. Research on laser cladding of deformed aluminum alloy[J]. China Surface Engineering, 2007, 20(6): 44-47.

[16] 黄凤晓. 激光熔覆和熔覆成形镍基合金的组织与性能研究[D]. 长春: 吉林大学, 2011.

    Huang F X. An investigation on microstructure and properties of Ni-based alloy by laser cladding and laser cladding forming[D]. Changchun: Jilin University, 2011.

[17] 许瑞华, 黎向锋, 左敦稳, 等. 扫描速度对钛合金NiCoCrAlY熔覆涂层显微组织及硬度的影响[J]. 稀有金属, 2014, 38(5): 807-812.

    Xu R H, Li X F, Zuo D W, et al. Microstructure and hardness of NiCoCrAlY coatings on titanium alloy by laser cladding with different scanning speeds[J]. Chinese Journal of Rare Metals, 2014, 38(5): 807-812.

[18] 张佳虹, 孙荣禄. 扫描速度对Ti6Al4V合金表面激光熔覆Ni基复合涂层组织及性能的影响[J]. 热加工工艺, 2016, 45(2): 145-148, 151.

    Zhang J H, Sun R L. Effect of scanning speed on microstructure and performance of Ti-6Al-4V alloy surface by laser cladding Ni-based composite coating[J]. Hot Working Technology, 2016, 45(2): 145-148, 151.

程伟, 武美萍, 唐又红, 王航, 叶秀. 42CrMo合金表面单道轨迹激光熔覆工艺研究[J]. 激光与光电子学进展, 2019, 56(4): 041402. Cheng Wei, Wu Meiping, Tang Youhong, Wang Hang, Ye Xiu. Laser Cladding Process of 42CrMo Surface with Single-Pass[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041402.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!