光子学报, 2009, 38 (10): 2682, 网络出版: 2011-11-17  

利用双面腔制备n原子GHZ态

Generation of n-Atom GHZ State via Two-sided Cavity QED*
作者单位
华南师范大学 信息光电子科技学院 光子信息技术实验室,广州 510006
摘要
提出了一种利用双面腔制备多原子GHZ态的方法.当腔中囚禁原子处于特定态时,腔可能反射入射的单光子脉冲,也可能透射它.这个特性可以引起囚禁原子和输入腔肠的纠缠.数值模拟显示制备的多原子GHZ态具有很高的保真度和成功率.而且原子自发辐射等内禀噪声只对成功率有影响,而对保真度几乎没有影响.另外,对高Q腔和原子的L-D条件的不要求,提升了试验实现的可行性.
Abstract
The scheme was proposed to generate multiple-atom GHZ state via the state-of-the-art two-sided cavities. A single-photon pulse could not only be reflected but also be transmitted through the two-sided cavity with a single trapped atom, which is in certain state. Entanglement between the trapped atom and the input field was resulted in this property. The numerical simulations showed that the produced multiple- particle GHZ state had high fidelity and success probability. The intrinsic noise, such as the atomic spontaneous emission, only led to the error probability and had no influence on the fidelity. In addition, the high-Q cavity and the Lamb-Dicke condition of atom were not required, which expanded the possibility of experimental realization.
参考文献

[1] BENNETT C H,BRASSARD G, CREPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys Rev Lett, 1993, 70(13):1895-1899.

[2] LIU X S, LONG G L, TONG D M, et al. General scheme for superdense coding between multiparties[J]. Phys Rev A, 2002,65(2):022304.

[3] EKERT A K. Quantum cryptography based on Bell′s theorem[J]. Phys Rev Lett, 1991, 67(6): 661-663.

[4] DING Sheng-chao, JIN Zhi. Review on the study of entanglement in quantum computation speedup[J]. Chinese Science Bulletin, 2007, 52(16): 2161-2166.

[5] GREENBERGER D M, HORNE M A, ZEILINGER A. Bell's theorem without inequalities[J]. Am J Phys, 1990, 58(12):1131-1143.

[6] DAVIDOCICH L, ZAGURY N, BRUNE M, et al. Teleportation of an atomic state between two cavities using nonlocal microwave fields[J]. Phys Rev A, 1994, 50(2):R895-R898.

[7] GUO Guang-can, ZHANG Yong-sheng. Scheme for preparation of the W state via cavity quantum electrodynamics[J]. Phys Rev A, 2002, 65(5):054302.

[8] SU Xiao-long, JIA Xiao-jun, XIE Chang-de, et al. Generation of GHZ-like and cluster-like quadripartite entangled states for continuous variable using a set of quadrature squeezed states[J]. Science in China Series G: Physics Mechanics& Astronomy, 2008, 51(1): 1-13.

[9] XU Wen-hu, ZHAO Xin, LONG Gui-lu. Efficient generation of multi-photon W states by joint-measurement[J]. Progress in Natural Science, 2008, 18(1): 119-122.

[10] CHEN Mei-feng, MA Song-she. Generation of W-type entangled coherent states of three-cavity field by raman interaction[J]. Acta Photonica Sinica, 2007, 36(5):950-954.

[11] BOUWMEESTER D, PAN Jian-wei, DANIELL M, et al. Observation of three-photon greenberger- horne- zeilinger entanglement[J]. Phys Rev Lett,1999, 82(7):1345-1349.

[12] ZHAO Zhi, YANG Tao, CHEN Yu-ao, et al. Experimental violation of local realism by four- photon greenberger-horne-zeilinger entanglement[J]. Phys Rev Lett, 2003, 91(18):180401.

[13] RAUSCHENBEUTRL A, NOGUES G., OSNAGHI S, et al. Step-by-step engineered multiparticle entanglement[J]. Science, 2000, 288(5473):2024-2028.

[14] CIRAC J I, ZOLLER P. Preparation of macroscopic superpositions in many-atom systems[J]. Phys Rev A, 1994, 50(4):R2799-R2802.

[15] LEIBFRIED D, BARRETT M D, SCHAETZ T, et al. Toward heisenberg-limited spectroscopy with multiparticle entangled states[J]. Science, 2004, 304(5676):1476-1478.

[16] ZHENG Shi-Biao. One-step synthesis of multiatom greenberger-horne-zeilinger states[J]. Phys Rev Lett, 2001, 87(23): 230404.

[17] RAIMOND J M, BRUNE M, HAROCHE S. Manipulating quantum entanglement with atoms and photons in a cavity[J]. Rev Mod Phys, 2001, 73(3):565-582.

[18] ZOU Xu-bo, PAHLKE K, MATHIS W. Conditional generation of the greenberger-horne-zeilinger state of four distant atoms via cavity decay[J]. Phys Rev A, 2003, 68(2):024302.

[19] ZOU Xu-bo, PAHLKE K, MATHIS W. Conditional generation of quantum entanglement of many distant atoms via multifold coincidence detection[J]. Phys Rev A, 2004, 69(1):013811.

[20] MAN Zhong-xiao, SU Fang, XIA Yun-jie. Efficient generation of Bell and W-type states in cavity QED[J]. Chinese Science Bulletin, 2008, 53(15):2410-2413.

[21] CHO J, LEE H W. Generation of atomic cluster states through the cavity input-output process[J]. Phys Rev Lett, 2005, 95(16):160501.

[22] LIN Xiu-min, XUE Peng, CHEN Mei-ying, et al. Scalable preparation of multiple-particle entangled states via the cavity input-output process[J]. Phys Rev A, 2006, 74(5): 052339..

[23] WAKS E, VUCKOVIC J. Dipole induced transparency in drop-filter cavity-waveguide systems[J]. Phys Rev Lett, 2006, 96(15):153601.

[24] WANG B, DUAN L M. Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation[J]. Phys Rev A, 2007, 75(5): 050304.

[25] WALLS, MILBURN G. Quantum optics[M]. 2nd ed. Berlin: Springer Verlag,1994: 121-127.

[26] MCKEEVER J, BUCK J R, BOOZER A D, et al. Determination of the number of atoms trapped in an optical cavity[J]. Phys Rev Lett, 2004, 93(14):143601.

吕园园, 王发强, 金锐博, 杨昊, 梁瑞生. 利用双面腔制备n原子GHZ态[J]. 光子学报, 2009, 38(10): 2682. LV Yuan-yuan, WANG Fa-qiang, JIN Rui-bo, YANG Hao, LIANG Rui-sheng. Generation of n-Atom GHZ State via Two-sided Cavity QED*[J]. ACTA PHOTONICA SINICA, 2009, 38(10): 2682.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!