激光与光电子学进展, 2015, 52 (10): 101405, 网络出版: 2015-10-08   

空气中和水下激光等离子体冲击波对硅表面形貌的影响 下载: 566次

Silicon Surface Topography by Laser-Induced Plasma Shock Waves in the Air and under Water
作者单位
西南科技大学-中国工程物理研究院激光聚变研究中心极端条件物质特性联合实验室, 四川 绵阳 621010
摘要
利用Nd∶YAG 纳秒脉冲激光(波长为532 nm)分别在空气中和水下对单晶硅进行单脉冲辐照,研究了在介质/硅片界面产生的激光等离子冲击波对硅表面形貌的影响。通过压电传感器对辐照过程中冲击波力学信号进行采集,利用扫描电子显微镜(SEM)对辐照后的硅片进行表征。结果表明:在相同能量强度下,水下辐照硅表面所产生的冲击波平均速度为空气中的1.5~2 倍,力学强度约为空气中的10 倍;水下硅表面的熔坑中心处出现了许多凸起的球状物以及下凹的孔洞,边缘处没有沉积物且具有波纹状结构,而空气中硅表面熔坑中心处较为光滑,边缘处具有一圈圈的沉积物。研究表面,在介质/硅片界面产生等离子冲击波所引起的热-力学效应是硅表面形貌形成的主要原因。与空气介质相比,在水下由于水的约束作用而引起更大的冲击波力学强度,以及由于水的存在而发生爆发式沸腾的热学现象共同导致了在水下和空气中硅表面形成了截然不同的形貌。
Abstract
The morphologies of silicon surfaces are modified with the single Nd:YAG nanosecond laser pulse (wavelength 532 nm) in the air and water. The influence of laser induced plasma shock waves in the medium/silicon interface on silicon surface topography is studied. The shock wave mechanical signals are gathered by piezoelectric sensors and the morphology of silicon surfaces is observed by scanning electron microscopes (SEM). It is found that at the same energy level, the average speed of the underwater shock wave generated by irradiating the silicon surface under water is 1.5~2 times higher than that in air, and the mechanical strength under water is about 10 times higher than that in air. By observing the silicon surface morphology, it is found that many raised bulbs and recessed holes appears at the center of the craters on silicon surface under water, with corrugated structure but no sediment at the edges. While the center of the craters on silicon surface in air are relatively smooth, with circles of sediment at the edges. Thermal-mechanical effect induced by plasma shock waves generated at the medium/silicon interface is the main reason of silicon surface topography formation. Under water, greater mechanical strength of the shock wave induced by restriction effect of water, and explosive boiling thermal phenomena result in completely different topography as compared with those in air.
参考文献

[1] 谢长鑫, 李晓红, 朱敏, 等. 单脉冲纳秒激光诱导硅表面微结构[J]. 强激光与粒子束, 2014, 26(11): 114101.

    Xie Changxin, Li Xiaohong, Zhu Min, et al.. Silicon surface microstructures induced by single nanosecond laser pulse[J]. High Power Laser and Particle Beams, 2014, 26(11): 114101.

[2] Fabbro R, Foumier J, Ballard P. Physical study of laser-produced plasma in confined geometry[J]. J Appl Phys, 1990, 68(2): 775-784.

[3] 罗思海, 何卫锋, 周留成, 等. 激光冲击对K403镍基合金高温疲劳性能和断口形貌的影响[J]. 中国激光, 2014, 41(9): 0903001.

    Luo Sihai, He Weifeng, Zhou Liucheng, et al.. Effects of laser shock processing on high temperature fatigue properties and fracture morphologies of K403 nickel-based alloy[J]. Chinese J Lasers, 2014, 41(9): 0903001.

[4] Gao L, Yu J, Zhang Y. Numerical simulation and experiment of TA2 sheet forming under laser shock[J]. Chin Opt Letters, 2006, 4(8): 472-475.

[5] 张青来, 王荣, 洪妍鑫, 等. 金属板料激光冲击成形及其破裂行为研究[J]. 中国激光, 2014, 41(4): 0403010.

    Zhang Qinglai, Wang Rong, Hong Yanxin, et al.. Study on laser shock forming and fracture behavior of metal sheet[J]. Chinese J Lasers, 2014, 41(4): 0403010.

[6] Zhang L, Zhang Y K, Lu J Z, et al.. Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion[J]. Corrosion Science, 2013, 66(8): 5-13.

[7] 李兴成, 张永康, 卢雅琳, 等. 激光冲击AZ31 镁合金抗腐蚀性能研究[J]. 中国激光, 2014, 41(4): 0403002.

    Li Xingcheng, Zhang Yongkang, Lu Yalin, et al.. Research of corrosion resistance for AZ31 magnesium alloy by laser shock processing[J]. Chinese J Lasers, 2014, 41(4): 0403002.

[8] Chu J P, Rigsbee J M, Banas′ G, et al.. Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel[J]. Materials Science and Engineering: A, 1999, 260(1-2): 260-268.

[9] 柳沅汛, 王曦, 吴先前, 等. 激光冲击处理304 不锈钢表面的形貌特征及其机理分析[J]. 中国激光, 2013, 40(1): 0103004.

    Liu Yuanxun, Wang Xi, Wu Xianqian, et al.. Surface morphology and deformation mechanism of 304 stainless steel treated by laser shock peening[J]. Chinese J Lasers, 2013, 40(1): 0103004.

[10] Huang Z, Carey J E, Liu M, et al.. Microstructured silicon photodetector[J]. Appl Phys Lett, 2006, 89(3): 033506.

[11] Huang W Q, Zhang R T, Wang H X, et al.. Laser on porous silicon after oxidation by irradiation and annealing[J]. Optics Communications, 2008, 281(20): 5229-5233.

[12] Craciun V, Bassim N, Singh R K, et al.. Laser-induced explosive boiling during nanosecond laser ablation of silicon[J]. Applied surface science, 2002, 186(1-4): 288-292.

[13] Karimzadeh R, Anvari J Z, Mansour N. Nanosecond pulsed laser ablation of silicon in liquids [J]. Applied Physics A, 2009, 94(4): 949-955.

[14] 韩晓玉, 杨小丽. 激光大气击穿阈值的数值分析[J].强激光与粒子束, 2005, 17(11): 1655-1659.

    Han Xiaoyu, Yang Xiaoli. Numerical calculation of atmospheric breakdown threshold induced by laser[J]. High Power Laser and Particle Beams, 2005, 17(11): 1655-1659.

[15] 宗思光, 王江安, 曹水, 等. 激光击穿液体介质的空化与声辐射[M]. 北京: 国防工业出版社, 2013: 14-15.

    Zong Siguang, Wang Jiang′an, Cao Shui, et al.. Cavitation and Sound Radicalization with Laser-Induced Breakdown in Liquid[M]. Beijing: National Defense Industry Press, 2013: 14-15.

[16] Gacek S, Wang X W. Dynamics evolution of shock waves in laser-material interaction[J]. Applied Physics A: Materials Science and Processing, 2009, 94(3): 675-690.

[17] 王娟, 陈传松, 满宝元, 等. 激光诱导硅等离子体的时间分辨发射光谱分析[J]. 激光杂志, 2009, 30(3): 20-21.

    Wang Juan, Chen Chuansong, Man Baoyuan, et al.. Time-resolved spectrum analyses of laser induced Si-plasma emission[J]. Laser Journal, 2009, 30(3): 20-21.

[18] 宁心, 李晓炎, 杨志焕, 等. 水下冲击波和空气冲击波传播速度及物理参数的对比研究[J]. 解放军医学杂志, 2004, 29(2): 97-99.

    Ning Xin, Li Xiaoyan, Yang Zhihuan, et al.. A comparative study on the propagation speed and physical parameters of underwater blast wave and air blast wave[J]. Medical Journal of Chinese People′s Liberation Army, 2004, 29(2): 97-99.

[19] Choo K L, Ogawa Y, Kanbargi G, et al.. Micromachining of silicon by short-pulse laser ablation in air and under water [J]. Materials Science and Engineering: A, 2004, 372(1-2): 145-162.

[20] Vogel A, Noack J, Nahen K, et al.. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales[J]. Applied Physics B: Lasers and Optics, 1999, 68(2): 271-280.

[21] Ueno I, Shoji M. Thermal-fluid phenomena induced by nanosecond-pulse heating of materials in water[J]. Journal of Heat Transfer, 2001, 123(6): 1123-1132.

[22] Kruusing A. Underwater and water-assisted laser processing: Part 1-general features, steam cleaning and shock processing [J]. Optics and Lasers in Engineering, 2004, 41(2): 307-327.

周子豪, 李晓红, 谢长鑫, 朱敏, 冯杰. 空气中和水下激光等离子体冲击波对硅表面形貌的影响[J]. 激光与光电子学进展, 2015, 52(10): 101405. Zhou Zihao, Li Xiaohong, Xie Changxin, Zhu Ming, Feng Jie. Silicon Surface Topography by Laser-Induced Plasma Shock Waves in the Air and under Water[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101405.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!