激光与光电子学进展, 2014, 51 (12): 121403, 网络出版: 2014-11-19   

7050铝合金表面Al/Ti激光熔覆工艺实验及温度场模拟分析 下载: 514次

Process Test and Temperature Field Simulation of the Al/Ti Laser Cladding Coating Above 7050 Aluminum Alloy
作者单位
南京航空航天大学机电学院, 江苏 南京 210016
摘要
在7050 铝合金表面激光熔覆Al/Ti 复合粉体,通过3 因素3 水平正交试验得知当激光功率为1.5 kW,扫描速度为150 mm/min,离焦量为50 mm 时熔覆层质量最优。模拟计算得到正交试验工艺参数下的光斑中心最高温度值,并利用极差分析得到:正交试验因素对中心点最高温度值影响程度从大到小的顺序是扫描速度V,激光功率P 和离焦量S。通过对9 组试样熔池尺寸及不同位置点温度随时间变化趋势分析可以得到,试样前端结合较差是由于熔覆过程中基体熔池深度较小,不足以使基体与熔覆材料很好地结合;而后端都出现的不同程度的变形和烧蚀,是末端温度急剧积累引起的。通过分析Al/Ti 熔覆层的金相组织可知,熔覆层组织以胞状树枝晶为主,且分布均匀细密。
Abstract
Based on the process of laser cladding Al/Ti composite powder above 7050 aluminum alloy, and by using an orthogonal experiment, an optimized cladding coating parameters are achieved with the laser power of 1.5 kW, the scanning speed of 150 mm/min and the defocusing amount of 50 mm. The highest temperature in the laser spot center is obtained from the simulation under the parameters in the orthogonal experiment. Using the range analysis, the relative significances of the three respective parameters, laser scanning speed V, laser power P and defocusing amount S are achieved in the order, from big to small. By analyzing sizes of the molten pool and several typical curves of sample temperature changing with the scanning direction in the condition of the orthogonal experiment, it has been discerned that the bonding strength of the sample front is poor because its molten pool depth in the substrate is too small to obtain a good combination between the cladding material and the substrate; moreover, the deformation and ablation occur at the sample end due to the substantial temperature accumulation origining from its poor heat dissipation. The grain morphology of Al/Ti cladding coating is mainly cellular dendrites with equal and dense distributions.
参考文献

[1] Johansen H D, Brett C M A, Motheo A J. Corrosion protection of aluminium alloy by cerium conversion and conducting polymer duplex coatings[J]. Corrosion Science, 2012, 63: 342-350.

[2] Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy [J]. Mater Sci Eng A, 2012, 542: 79-87.

[3] 王小艳, 陈静, 林鑫, 等. AlSi12 粉激光成形修复7050 铝合金组织[J]. 中国激光, 2009, 36(6): 1585-1590.

    Wang Xiaoyan, Chen Jing, Lin Xin, et al.. Microstructure of laser forming repair 7050 aluminum alloy with AlSi12 powder[J]. Chinese J Lasers, 2009, 36(6): 1585-1590.

[4] S PalDey, S C Deevi, T L Alford. Cathodic arc deposited thin film coatings based on TiAl intermetallics[J]. Intermetallics, 2004, 12 (7-9): 985-991.

[5] Uenishi K, Kobayashi K F. Formation of surface layer based on Al3Ti on aluminum by laser cladding and its compatibility with ceramics[J]. Intermetallics, 1999, 7(5): 553-559.

[6] Guo B G, Zhou J S, Zhang S T, et al.. Phase composition and tribological properties of Ti-Al coatings produced on pure Ti by laser cladding[J]. Applied Surface Science, 2007, 253(24): 9301-9310.

[7] Garcia I, Fuente J dela, Damborenea J J de. (Ti,Al)/(Ti,Al)N coatings produced by laser surface alloying[J]. Materials Letters, 2002, 53 (1-2): 44-51.

[8] 郝建军, 李会平, 马跃进, 等. 喷砂预处理在铸铁零件修复中的应用研究[J]. 农业机械学报, 2003, 34(4): 120-126.

    Hao Jianjun, Li Huiping, Ma Yuejin, et al.. Experimental investigation on repairing iron cast parts with grit-blasting pretreatment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(4): 120-126.

[9] Emamian A, Corbin S F, Khajepour A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings[J]. Surface and Coatings Technology, 2010, 205(7): 2007-2015.

[10] 陈刚, 黎向锋, 左敦稳, 等. GH4033 基材相对稀释率的仿真研究[J]. 激光与光电子学进展, 2011, 48(1): 011601.

    Chen Gang, Li Xiangfeng, Zuo Dunwen, et al.. Simulation on substrate relative dilution ratio for GH4033[J]. Laser & Optoelectronics Progress, 2011, 48(1): 011601.

[11] 刘昊, 虞钢, 何秀丽, 等. 送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J]. 中国激光, 2013, 40(12): 1203007.

    Liu Hao, Yu Gang, He Xiuli, et al.. Three-dimensional numerical simulation of transient temerature field and coating gemometry in power feeding laser cladding[J]. Chinese J Lasers, 2013, 40(12): 1203007.

[12] Qi H, Mazumder J Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition[J]. Journl of Applied Physics, 2006, 100(2): 024903.

[13] 江世好, 黎向锋, 左敦稳, 等. 基于预置压片的高温合金激光熔覆温度场仿真[J]. 兵器材料科学与工程, 2011, 34(4): 23-27.

    Jiang Shihao, Li Xiangfeng, Zuo Dunwen, et al.. Simulation on laser cladding temperature field of high-temperature alloy based on preset squash[J]. Ordnance Material Science and Engineering, 2011, 34(4): 23-27.

[14] 鲁青龙, 王彦芳, 栗荔. 扫描速度对激光熔覆铁基非晶复合涂层组织与性能的影响[J]. 中国激光, 2013, 40(2): 0203007.

    Lu Qinglong, Wang Yanfang, Li Li, et al.. Effects of scanning speed on microstructures and properties of laser cladding Fe-based amorphous composite coatings[J]. Chinese J Lasers, 2013, 40(2): 0203007.

李建忠, 黎向锋, 左敦稳, 许瑞华, 陈竹. 7050铝合金表面Al/Ti激光熔覆工艺实验及温度场模拟分析[J]. 激光与光电子学进展, 2014, 51(12): 121403. Li Jianzhong, Li Xiangfeng, Zuo Dunwen, Xu Ruihua, Chen Zhu. Process Test and Temperature Field Simulation of the Al/Ti Laser Cladding Coating Above 7050 Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2014, 51(12): 121403.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!