大气与环境光学学报, 2018, 13 (6): 401, 网络出版: 2018-12-25   

大气探测激光雷达网络和星载激光雷达技术综述

Review on Atmospheric Detection Lidar Network and Spaceborne Lidar Technology
作者单位
1 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
摘要
大气探测激光雷达以精细的时空分辨率、高探测精度和连续廓线数据获取能力成为大气探测强有力的工具。通过激光雷达观测网络和星载激光雷达, 可以获得大空间尺度持续的四维大气信息,满足环境、气象和气候研究的需要。介绍了目前存在的比较重要的激光雷达网络和航天强国 的星载激光雷达计划。主要的激光雷达网络有全球大气成分变化探测网(NDACC)、欧洲气溶胶研究激光雷达观测网(EARLINET)、亚洲沙尘激光 雷达观测网(AD-NET)、美国东部激光雷达观测网(REALM)、微脉冲激光雷达网(MPLNET)和独联体激光雷达网(CIS-LINET),分别介绍了它们 各自的功能、激光雷达类型和站点、日常观测活动与规范。激光雷达空间技术试验(LITE)开启了星载激光雷达的新纪元,之后美国航空航天 局NASA、欧空局ESA和日本宇航局JAXA先后开展了星载激光雷达计划,分别介绍了这些星载激光雷达的科学目标、激光雷达类型及相关参数 以及技术原理。中国也正在筹划研制激光雷达卫星载荷,用于探测大气气溶胶、云和二氧化碳。最后总结说明了激光雷达网络化和卫星载荷的优势和应用。
Abstract
Atmospheric detection lidar is a powerful tool with fine temporal-spatial resolution, high detection accuracy and real-time profiling data acquisition. Lidar network and spaceborne lidar technology, can obtain large-spatial-scale and continuous four-dimensional atmospheric data for researching on environment, meteorology and climate. The lidar network and the spaceborne lidar program are introduced in detail. The main lidar networks include the network detection of atmospheric composition change(NDACC), the European aerosol research lidar network(EARLINET), the Asian dust and aerosol research network(AD-NET), the regional east atmospheric lidar mesonet(REALM), micro-pulse lidar network(MPLNET), and the atmosphere aerosol and ozone monitoring in CIS regions(CIS-LINET). The functions, the lidar types organization and lidar sites, daily observation activities and standardization are described respectively for every lidar network. Lidar in space technology experiment(LITE) has opened a new era for spaceborne lidar. Following that, several spaceborne lidar programs are proposed by the NASA, ESA and JAXA. The scientific goal, lidar type, lidar related parameters and the technical principles of these spaceborne lidar are introduced respectively. In China, a multifunction spaceborne lidar is also proposed to monitor aerosol, cloud and CO2. In summary, the advantages and the applications of the lidar networking observation and the spaceborne lidar are illustrated.
参考文献

[1] Weitkamp C.Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere[M]. Springer Science & Business, 2006.

[2] Godin-Beekmann S. Network for the detection of atmospheric composition change[C].WMO Experts Meeting on the implementation of a GAW Aerosol Lidar Observation Network: GALION, 2007.

[3] Bosenberg J. European Aerosol research Lidar network[C].Experts Meeting on the implementation of a GAW Aerosol Lidar Observation Network: GALION, 2007.

[4] Chaikovsky A, Ivanov A, Balin Y,et al. Lidar network CIS-LiNet for monitoring aerosol and ozone in CIS regions[C]. Proceedings of SPIE, 2006, 6160: 616035.

[5] Nishizawa T, Sugimoto N, Matsui I,et al. The asian dust and aerosol lidar observation network (AD-NET): strategy and progress[C]. EPJ Web of Conferences, 2016, 119: 19001.

[6] Welton E J, Campbell J R, Spinhirne J D,et al. Global monitoring of clouds and aerosols using a network of micropulse lidar systems[C]. Second International Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment, and Space, 2001, 4153: 151-158.

[7] Hoff R M, McCann K J, McMillan W W,et al. REALM lidar observations during the INTEX/NE-NEAQS study period, paper 5.3[C]// nd Symposium on Lidar Applications, AMS Annual Meeting, 2005.

[8] Bsenberg J, Hoff R, Ansmann A,et al. Plan for implementation of a GAW aerosol lidar observation network: GALION. World Meteorological Organization[R]. WMO-TD 1443, 2007.

[9] Winker D M, Couch R H, Mccormick M. An overview of LITE: NASA’s lidar in-space technology experiment[J].Proceedings of the IEEE, 1996, 84(2): 164-180.

[10] Stoffelen A, Pailleux J, Kllén E,et al. The atmospheric dynamics mission for global wind field measurement[J]. Bulletin of the American Meteorological Society, 2005, 8(1): 73-87.

[11] Illingworth A J, Barker H W, Beljaars A,et al. The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation[J]. Bulletin of the American Meteorological Society, 2015, 9(8): 1311-1332.

[12] Bézy J L. ESA’s earth observation lidar missions and critical technology developments[C].ICSO, 2010.

[13] Durand Y, Bézy J L, Meynart R. Laser technology developments in support of ESA’s earth observation missions[C].Solid State Lasers XVII: Technology and Devices, 2008, 6871: 68710G.

[14] Gérard E, Tan D G H, Garand L,et al. Major advances foreseen in humidity profiling from the water vapour lidar experiment in space (WALES)[J]. Bulletin of the American Meteorological Society, 2004, 85(2): 237-251.

[15] Pierangelo C, Millet B, Esteve F,et al. MERLIN (methane remote sensing LIDAR mission): an overview[C]. EPJ Web of Conferences, 2016: 26001.

[16] Stephan C, Alpers M, Millet B,et al. MERLIN: a space-based methane monitor[C]. SPIE Optical Engineering Applications, 2011, 8259: 815908.

[17] ASCENDS[OL]. https://fpd.larc.nasa.gov/ ascends.html.

[18] 3D-Winds, Three-Dimensional Tropospheric Winds[OL]. https://www.nap.edu/read/11952/ chapter/20.

[19] Network for the detection of atmospheric composition change[OL]. http://www.ndsc.ncep. noaa.gov/.

[20] NDACC. NDACC lidar working group[OL]. http://ndacc-lidar.org/.

[21] Leblanc T, Sica R, Gijsel A V,et al. Standardized definition and reporting of vertical resolution and uncertainty in the ndacc lidar ozone and temperature algorithms.[R]. International Space Science Institute (ISSI) report summary, 2016.

[22] EARLINET[OL]. https://www.earlinet.org/ index. php id= earlinet-homepage.

[23] Papayannis A, Amiridis V, Mona L,et al. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002)[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D10).

[24] Bsenberg J, Matthias V, Linné H,et al. EARLINET: A European Aerosol Research Lidar Network to establish an aerosol climatology[J]. Max-Planck-Institut fur Meteorologie, 2003(348): 1-191.

[25] Bckmann C, Wandinger U, Ansmann A,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms[J]. Applied Optics, 2004, 43(4): 977-989.

[26] Matthais V, Freudenthaler V, Amodeo A,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments[J]. Applied Optics, 2004, 43(4): 961-976.

[27] Pappalardo G, Amodeo A, Pandolfi M,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio[J]. Applied Optics, 2004, 43(28): 5370-5385.

[28] ACTRIS[OL]. http://www.actris.eu/.

[29] Lidar Calibration Centre. How often is the alighment and calibration checked [OL]. http:// lical.inoe.ro/.

[30] Myhre C L, Baltensperger U, Barrie L,et al. Recommendations for a composite surface-based aerosol network[R]. World Meteorological Organization, 2012.

[31] MPLNET[OL]. https://mplnet.gsfc.nasa.gov/.

[32] Baltensperger U, Barrie L, Wehrli C. WMO/ GAW experts workshop on a global surface-based network for long term observations of column aerosol optical properties[R]. WMO/ TD- No. 1287; Geneva, Switzerland, 2004.

[33] Sugimoto N, Nishizawa T, Shimizu A,et al. Continuous observation of atmospheric aerosols across East Asia[N]. SPIE Newsroom, 2015.

[34] AD-Net, the Asian dust and aerosol lidar observation network[OL]. http://www-lidar. nies.go.jp/AD-Net/.

[35] Sugimoto N, Matsui I, Shimizu A,et al. Lidar network observation of tropospheric aerosols[C]. Lidar Remote Sensing for Environmental Monitoring IX, 2008: 71530A-1.

[36] Sugimoto N, Nishizawa T, Shimizu A,et al. Characterization of aerosols in East Asia with the Asian dust and aerosol lidar observation network (AD-Net)[C]// Lidar Remote Sensing for Environmental Monitoring XIV. International Society for Optics and Photonics, 2014, 9262: 92620K.

[37] Shimizu A, Sugimoto N, Matsui I,et al. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia[J]. Journal of Geophysical Research, 2004, 109(D19): D19S17.

[38] Sugimoto N, Uno I, Nishikawa M,et al. Record heavy Asian dust in Beijing in 2002: Observations and model analysis of recent events[J]. Geophysical Research Letters, 2003, 30(12): 1640.

[39] Sugimoto N, Nishizawa T, Shimizu A,et al. Characterization of aerosols in East Asia with the Asian dust and aerosol lidar observation network (AD-Net)[C]. SPIE Asia-Pacific Remote Sensing, 2014, 9262: 92620K.

[40] REALM Data Center[OL]. http://alg.umbc.edu/ REALM/ RDC/.

[41] Regional East Atmospheric Lidar Mesonet (REALM)[OL]. http://alg.umbc.edu/REALM/.

[42] CREST Lidar Network[OL]. https://noaacrest. umbc.edu/crest-lidar-network/.

[43] Chaikovsky A, Balin Y, Elnikov A,et al. CIS-LiNet-lidar network in CIS countries[J]. Geophysical Research Abstracts, 2005, 7: 03687.

[44] CIS Lidar Network for Atmosphere Monitoring[OL]. http://www.istc.int/en/project/F7ACDCD 76036CA9AC3256EDD002F619A.

[45] Zuev V V, Balin Y S, Bukin O,et al. Results of joint observations of aerosol perturbations of the stratosphere at the CIS-LiNet network in 2008[J]. Atmospheric and Oceanic Optics, 2009, 22(3): 295-301.

[46] GALION. World meteorological organization (WMO) commission for atmospheric sciences (CAS) global atmosphere watch (GAW)[OL]. http://alg.umbc.edu/galion/.

[47] World Meteorological Organization. Networks contributing to the GAW programme (contributing networks)[OL]. http://www.wmo. int/pages/prog/arep/gaw/GAW-contr-networks. html.

[48] Seagram A F.Nowcasting Precipitation Onset in Vancouver Using CORALNet-UBC Lidar Imagery[D]. Vancouver: Bachelor of Science Honours of University of British Columbia, 2010.

[49] Zwally H, Schutz B, Abdalati W,et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 2002, 34(3): 405-445.

[50] ICESat-2(ice, cloud and land elevation satellite-2)[OL]. https://directory.eoportal.org/web/ eoportal/satellite-missions/i/icesat-2.

[51] Abdalati W, Zwally H J, Bindschadler R,et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 2010, 98(5): 735-751.

[52] Newmann T, Markus T, Mcgill M,et al. MABEL and the ICESat-2 Mission: Photon-counting Altimetry from Air and Space[J]. The Earth Observer, 2012, 24(5): 4-8.

[53] Winker D M, Hunt W H, Mcgill M J. Initial performance assessment of CALIOP[J].Geophysical Research Letters, 2007, 34(19): L19803.

[54] Liu D, Wang Z, Liu Z,et al. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D16): D16214.

[55] Liu Z, Vaughan M, Winker D,et al. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance[J]. Journal of Atmospheric and Oceanic Technology, 2009, 2(7): 1198-1213.

[56] Omar A H, Winker D M, Vaughan M A,et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 2(10): 1994-2014.

[57] Sassen K, Wang Z, Liu D. Global distribution of cirrus clouds from CloudSat/Cloud‐Aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D8): D00A12.

[58] 卢乃锰, 闵 敏, 董立新, 等. 星载大气探测激光雷达发展与展望[J]. 遥感学报, 2016, 20(1): 1-10.

    Lu Naimeng, Min Min, Dong Lixin,et al. Development and prospect of spaceborne Lidar for atmospheric detection[J]. Journal of Remote Sensing, 2016, 20(1): 1-10(in Chinese).

[59] OSCAR. Satellite: ASCENDS[OL]. https:// www. wmo-sat. info/oscar/ satellites/view/12.

[60] OSCAR. Satellite: 3d-Winds[OL]. https:// www.wmo-sat.info/oscar/satellites/view/505.

[61] Clouds. Ecosystems[OL]. https://acemission. gsfc.nasa.gov/about.html

[62] OSCAR. Instrument: ACE Lidar[OL]. https:// www.wmo-sat.info/oscar/instruments/view/957.

[63] OSCAR. Satellite: ADM-Aeolus[OL]. https:// www.wmo-sat.info/oscar/satellites/view/4.

[64] Aeolus instrumnet[OL]. http://www.esa.int/ Our-Activities/Observing-the-Earth/The- Living-Planet-Programme/Earth-Explorers/ ADM-Aeolus/Payload.

[65] Vega Flight VV12-ADM-Aeolus-August 22, 2018[OL]. https://forum.nasaspaceflight.com/index. php topic=27667.msg1849052.

[66] Earthcare earth explorers[OL]. http://www.esa. int/ Our-Activities/Observing-the-Earth/ The -Living-Planet-Programme/Earth- Explorers/ EarthCARE.

[67] EarthCARE[OL]. https://earth.esa.int/ web/ guest/ missions/ esa-future-missions/ earthcare.

[68] Christian J, Hinkel H, Maguire S,et al. The sensor test for orion relnav risk mitigation (storrm) development test objective[C]. AIAA Guidance, Navigation, and Control Conference, 2011.

[69] Winker D M, Hunt W H, Hostetler C A. Status and performance of the CALIOP lidar[C].Proceedings of SPIE, 2004, 5575: 8-16.

[70] Aeolus Satellite[OL]. http://www.esa.int/Our- Activities/Observing-the-Earth/Aeolus/Satellite.

[71] 赵一鸣, 李艳华, 商雅楠, 等. 激光雷达的应用及发展趋势[J]. 遥测遥控, 2014, 35(5): 4-22.

    Zhao Yiming, Li Yanhua, Sang Yanan,et al. Application and development direction of lidar[J]. Journal of Telemetry, Tracking and Command, 2014, 35(5): 4-22(in Chinese).

田晓敏, 刘东, 徐继伟, 王珍珠, 王邦新, 吴德成, 钟志庆, 谢晨波, 王英俭. 大气探测激光雷达网络和星载激光雷达技术综述[J]. 大气与环境光学学报, 2018, 13(6): 401. TIAN Xiaomin, LIU Dong, XU Jiwei, WANG Zhenzhu, WANG Bangxin, WU Decheng, ZHONG Zhiqing, XIE Chenbo, WANG Yingjian. Review on Atmospheric Detection Lidar Network and Spaceborne Lidar Technology[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(6): 401.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!