Photonics Research, 2020, 8 (7): 07001124, Published Online: Jun. 4, 2020   

Distance-controllable and direction-steerable opto-conveyor for targeting delivery Download: 717次

Author Affiliations
1 Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
2 Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
3 Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
4 e-mail: thzhechen@jnu.edu.cn
Copy Citation Text

Zhen Che, Wenguo Zhu, Yaoming Huang, Yu Zhang, Linqing Zhuo, Pengpeng Fan, Zhibin Li, Huadan Zheng, Wenjin Long, Wentao Qiu, Yunhan Luo, Jun Zhang, Jinghua Ge, Jianhui Yu, Zhe Chen. Distance-controllable and direction-steerable opto-conveyor for targeting delivery[J]. Photonics Research, 2020, 8(7): 07001124.

References

[1] A. Ashkin, J. M. Dziedzic, J. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 1986, 11: 288-290.

[2] R.-C. Jin, J.-Q. Li, L. Li, Z.-G. Dong, Y. Liu. Dual-mode subwavelength trapping by plasmonic tweezers based on v-type nanoantennas. Opt. Lett., 2019, 44: 319-322.

[3] J. C. Crocker, D. G. Grier. Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett., 1994, 73: 352-355.

[4] Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, I. Nishio. Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure. Phys. Rev. Lett., 1997, 78: 3963-3966.

[5] J. Liu, Z.-Y. Li. Light-driven crystallization of polystyrene micro-spheres. Photon. Res., 2017, 5: 201-206.

[6] H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, L. Yuan. Fiber-based optical gun for particle shooting. ACS Photonics, 2017, 4: 642-648.

[7] C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nat. Photonics, 2007, 1: 723-727.

[8] Y. Zhang, X. Dou, Y. Dai, X. Wang, C. Min, X. Yuan. All-optical manipulation of micrometer-sized metallic particles. Photon. Res., 2018, 6: 66-71.

[9] D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, M. Aspelmeyer. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers. Appl. Phys. Lett., 2016, 108: 221103.

[10] M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, C.-L. Hung. Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices. Nat. Commun., 2019, 10: 1647.

[11] T. Moura, U. Andrade, J. Mendes, M. Rocha. Silicon microparticles as handles for optical tweezers experiments. Opt. Lett., 2020, 45: 1055-1058.

[12] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 1985, 55: 48-51.

[13] T. W. Hänsch, A. L. Schawlow. Cooling of gases by laser radiation. Opt. Commun., 1975, 13: 68-69.

[14] M. P. MacDonald, G. C. Spalding, K. Dholakia. Microfluidic sorting in an optical lattice. Nature, 2003, 426: 421-424.

[15] X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, Y. Yang. Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip. Lab Chip, 2018, 18: 3405-3412.

[16] C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, H. Li. Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers. Nanoscale, 2019, 11: 3945-3951.

[17] H. Wang, X. Gao, X. Hu, X. Hu, C. Hu, H. Li. Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers. Biochemistry, 2019, 58: 4751-4760.

[18] C. Mio, T. Gong, A. Terray, D. Marr. Design of a scanning laser optical trap for multiparticle manipulation. Rev. Sci. Instrum., 2000, 71: 2196-2200.

[19] S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, H. Flyvbjerg. Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum., 2006, 77: 103101.

[20] K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara. Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt. Lett., 1991, 16: 1463-1465.

[21] AraiF.EndoT.YamuchiR.FukudaT., “3D 6DOF manipulation of micro-object using laser trapped microtool,” in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2006), pp. 13901395.

[22] X. Liu, Y. Wu, X. Xu, Y. Li, Y. Zhang, B. Li. Bidirectional transport of nanoparticles and cells with a bio-conveyor belt. Small, 2019, 15: 1905209.

[23] T. Čižmár, V. Garcés-Chávez, K. Dholakia, P. Zemánek. Optical conveyor belt for delivery of submicron objects. Appl. Phys. Lett., 2005, 86: 174101.

[24] W. Ding, T. Zhu, L.-M. Zhou, C.-W. Qiu. Photonic tractor beams: a review. Adv. Photonics, 2019, 1: 024001.

[25] D. B. Ruffner, D. G. Grier. Optical conveyors: a class of active tractor beams. Phys. Rev. Lett., 2012, 109: 163903.

[26] D. B. Ruffner, D. G. Grier. Universal, strong and long-ranged trapping by optical conveyors. Opt. Express, 2014, 22: 26834-26843.

[27] P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, Z. Chen. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett., 2011, 36: 2883-2885.

[28] Y. Liang, S. Yan, B. Yao, M. Lei. Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams. Opt. Express, 2019, 27: 37975-37985.

[29] J. A. Rodrigo, T. Alieva. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica, 2015, 2: 812-815.

[30] Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, M. Lei. Simultaneous optical trapping and imaging in the axial plane: a review of current progress. Rep. Prog. Phys., 2020, 83: 032401.

[31] Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, Y. Zheng. Nanoradiator-mediated deterministic opto-thermoelectric manipulation. ACS Nano, 2018, 12: 10383-10392.

[32] P. Hansen, Y. Zheng, J. Ryan, L. Hesselink. Nano-optical conveyor belt, part I: theory. Nano Lett., 2014, 14: 2965-2970.

[33] Y. Zheng, J. Ryan, P. Hansen, Y.-T. Cheng, T.-J. Lu, L. Hesselink. Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps. Nano Lett., 2014, 14: 2971-2976.

[34] G. Wang, Z. Ying, H.-P. Ho, Y. Huang, N. Zou, X. Zhang. Nano-optical conveyor belt with waveguide-coupled excitation. Opt. Lett., 2016, 41: 528-531.

[35] Y. Tanaka, S. Kaneda, K. Sasaki. Nanostructured potential of optical trapping using a plasmonic nanoblock pair. Nano Lett., 2013, 13: 2146-2150.

[36] A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature, 2009, 457: 71-75.

[37] M. D. Baaske, M. R. Foreman, F. Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol., 2014, 9: 933-939.

[38] M. Righini, A. S. Zelenina, C. Girard, R. Quidant. Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys., 2007, 3: 477-480.

[39] A. Grigorenko, N. Roberts, M. Dickinson, Y. Zhang. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics, 2008, 2: 365-370.

[40] J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, A. Boltasseva. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotechnol., 2016, 11: 53-59.

[41] W. Wright, G. Sonek, M. Berns. Radiation trapping forces on microspheres with optical tweezers. Appl. Phys. Lett., 1993, 63: 715-717.

[42] A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J., 1992, 61: 569-582.

[43] N. Roos. Entropic forces in Brownian motion. Am. J. Phys., 2014, 82: 1161-1166.

[44] ReifF., Fundamentals of Statistical and Thermal Physics (Waveland, 2009).

[45] J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, M. Padgett. Comparison of Faxén’s correction for a microsphere translating or rotating near a surface. Phys. Rev. E, 2009, 79: 026301.

Zhen Che, Wenguo Zhu, Yaoming Huang, Yu Zhang, Linqing Zhuo, Pengpeng Fan, Zhibin Li, Huadan Zheng, Wenjin Long, Wentao Qiu, Yunhan Luo, Jun Zhang, Jinghua Ge, Jianhui Yu, Zhe Chen. Distance-controllable and direction-steerable opto-conveyor for targeting delivery[J]. Photonics Research, 2020, 8(7): 07001124.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!