光电工程, 2020, 47 (4): 190280, 网络出版: 2020-05-27   

气体光学检测技术及其应用研究进展

Optical gas detection: key technologies and applications review
作者单位
福州大学机械工程及自动化学院,福建 福州 350116
摘要
气体的快速识别与检测已成为国内外研究者迫切解决的重大问题。随着光学技术的快速发展,气体光学检测技术以其高效率、多组分、高灵敏度等显著优势而成为气体检测领域的重要研究热点之一。本文介绍了气体光学检测技术的理论基础,并按主动式与被动式两大类综述了各种典型气体光学检测技术的工作原理及应用进展。运用这些气体检测技术,已经对几十种气体实现远距离、高灵敏度的连续实时监测,完成了多种场景下对气体成分、浓度、温度等参数的测量,有效减少了危险事故的发生。通过总结和分析现有气体光学检测技术仍存在的技术问题,对未来的发展趋势进行了展望。
Abstract
Rapid identification and detection of gases is a major problem that needs to be solved urgently by researches from worldwide. With the development of optical technology, optical gas detection technology has attracted great attention due to its remarkable advantages of high efficiency, multi-component detection ability and high sensitivity. In this paper, the theoretical foundation of optical gas detection technology is first introduced. Then the working principles and applications of various optical detection technologies for typical gases according to active and passive detection are reviewed. Using these gas detection technologies, dozens of gases have been continuously monitored at long distance with high sensitivity. The measurements of gas composition, concentration, temperature and other parameters in a variety of scenarios are realized, which effectively reduces the occurrence of dangerous accidents. By summarizing and analyzing the technical problems that still exist in the current optical gas detection technology, the future development trend is prospected.
参考文献

[1] 罗淑芹. 基于TDLAS的CO2气体检测分析系统[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    Luo S Q. Detection and analysis system for CO2 gas based on TDLAS[D]. Harbin: Harbin Institute of Technology, 2013.

[2] 刘文清, 崔志成, 董凤忠. 环境污染监测的光学和光谱学技术[J]. 光电子技术与信息, 2002, 15(5): 1–12.

    Liu W Q, Cui Z C, Dong F Z. Optical and spectroscopic techniques for environmental pollution monitoring[J]. Optoelectronic Technology & Information, 2002, 15(5): 1–12.

[3] 施文. 有毒有害气体检测仪器原理和应用[M]. 北京: 化学工业出版社, 2009.

    Shi W. The Principle and Application of Hazardous Gas Detectors[M]. Beijing: Chemical Industry Press, 2009.

[4] 王帅, 冯新泸. 多组分气体检测与识别技术进展[J]. 重庆工学院学报(自然科学版), 2007, 21(3): 78–81, 87.

    Wang S, Feng X L. Development of multigas analysis and identifying technology[J]. Journal of ChongQing Institute of Technology (Natural Science Edition), 2007, 21(3): 78–81, 87.

[5] 聂伟, 阚瑞峰, 杨晨光, 等. 可调谐二极管激光吸收光谱技术的应用研究进展[J]. 中国激光, 2018, 45(9): 0911001.

    Nie W, Kan R F, Yang C G, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911001.

[6] Claps R, Englich F V, Leleux D P, et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J]. Applied Optics, 2001, 40(24): 4387–4394.

[7] Flanigan D F. Limits of passive remote detection of hazardous vapors by computer simulation[J]. Proceedings of SPIE, 1996, 2763: 117–127.

[8] Hinkley E D. Tunable infra-red lasers and their applications to air pollution measurements[J]. Opto-Electronics, 1972, 4(2): 69–86.

[9] Schiff H I, Mackay G I, Bechara J. The use of tunable diode laser absorption spectroscopy for atmospheric measurements[J]. Research on Chemical Intermediates, 1994, 20(3–5): 525–556.

[10] 刘秀, 王岭雪, 金伟其, 等. 危险气体泄漏的光学遥测技术及其进展[J]. 红外技术, 2009, 31(10): 563–567, 572.

    Liu X, Wang L X, Jin W Q, et al. The development of optical remote measurement for hazardous gas leakage[J]. Infrared Technology, 2009, 31(10): 563–567, 572.

[11] Reid J, Labrie D. Second-harmonic detection with tunable diode lasers — Comparison of experiment and theory[J]. Applied Physics B, 1981, 26(3): 203–210.

[12] Chen P, Gang C, Tang J P, et al. High-speed mid-infrared frequency modulation spectroscopy based on quantum cascade laser[J]. IEEE Photonics Technology Letters, 2016, 28(16): 1727–1730.

[13] Deguchi Y, Kamimoto T, Wang Z Z, et al. Applications of laser diagnostics to thermal power plants and engines[J]. Applied Thermal Engineering, 2014, 73(2): 1453–1464.

[14] Wang J, Yu D H, Ye H J, et al. Applications of optical measurement technology in pollution gas monitoring at thermal power plants[J]. Proceedings of SPIE, 2011, 8197: 819702.

[15] Liu S Y, Tao Z, Jia X D. Towards aerial natural gas leak detection system based on TDLAS[J]. Proceedings of SPIE, 2014, 9299: 92990X.

[16] Deng J, Chen W L, Wang W F, et al. Study on online detection method of methane gas in coal mine based on TDLAS technology[M]//Wang X T. Proceedings of the 11th International Mine Ventilation Congress. Singapore: Springer, 2019.

[17] He C G, Zhang Y J, Chen C, et al. Signal detection circuit design of HCN measurement system based on TDLAS[J]. Proceedings of SPIE, 2016, 10157: 1015710.

[18] Yin W, Wei Y B, Chang J, et al. Tunable diode laser absorption spectroscopy- based detection of propane for explosion early warning by using a vertical cavity surface enhanced laser source and principle component analysis approach[J]. IEEE Sensors Journal, 2017, 17(15): 4975–4982.

[19] He Q X, Zheng C T, Liu H F, et al. A near-infrared acetylene detection system based on a 1.534 μm tunable diode laser and a miniature gas chamber[J]. Infrared Physics & Technology, 2016, 75: 93–99.

[20] Wang Y, Nikodem M, Zhang E, et al. Shot-noise limited faraday rotation spectroscopy for detection of nitric oxide isotopes in Breath, Urine and Blood[J]. Scientific Reports, 2015, 5: 9096.

[21] Gonzalez-Valencia R, Magana-Rodriguez F, Gerardo-Nieto O, et al. In situ measurement of dissolved methane and carbon dioxide in freshwater ecosystems by off-axis integrated cavity output spectroscopy[J]. Environmental Science & Technology, 2014, 48(19): 11421–11428.

[22] Xia H H, Kan R F, Xu Z Y, et al. Measurements of axisymmetric temperature and H2O concentration distributions on a circular flat flame burner based on tunable diode laser absorption tomography[J]. Proceedings of SPIE, 2016, 10156: 101560S.

[23] Pan R, Jeffries J B, Dreier T, et al. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy[J]. Applied Physics B, 2016, 122(1): 4.

[24] 胡欢陵, 王志恩, 吴永华, 等. 紫外差分吸收激光雷达测量平流层臭氧[J]. 大气科学, 1998, 22(5): 701–708.

    Hu H L, Wang Z E, Wu Y H, et al. UV-DIAL system for measurements of stratospheric ozone[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(5): 701–708.

[25] 胡顺星, 陈亚峰, 刘秋武, 等. 差分吸收激光雷达系统探测背景大气SO2和NO2[J]. 中国激光, 2018, 45(9): 113–118.

    Hu S X, Chen Y F, Liu Q W, et al. Differential absorption lidar system for background atmospheric SO2 and NO2 measurements[J]. Chinese Journal of Lasers, 2018, 45(9): 113–118.

[26] Singh U N, Yu J R, Petros M, et al. Development of a pulsed 2-micron integrated path differential absorption lidar for CO2 measurement[J]. Proceedings of SPIE, 2013, 8872: 887209.

[27] Singh U N, Refaat T F, Petros M, et al. Evaluation of 2-μm pulsed integrated path differential absorption lidar for carbon dioxide measurement—technology developments, measurements, and path to space[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(6): 2059–2067.

[28] Gibert F, Edouart D, Cénac C, et al. 2-μm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere[J]. Optics Letters, 2015, 40(13): 3093–3096.

[29] Amediek A, Ehret G, Fix A, et al. CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions[J]. Applied Optics, 2017, 56(18): 5182–5197.

[30] Meng L C, Fix A, Wirth M, et al. Upconversion detector for range-resolved DIAL measurement of atmospheric CH4[J]. Optics Express, 2018, 26(4): 3850–3860.

[31] Platt U, Perner D, P?tz H W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption[J]. Journal of Geophysical Research: Oceans, 1979, 84(C10): 6329–6335.

[32] 姚建铨, 李润宸, 赵帆, 等. 基于DOAS的消防应急救援多气体快速遥感仪[J]. 光电子?激光, 2018, 29(3): 314–317.

    Yao J Q, Li R C, Zhao F, et al. Fast multi-gas remote monitor based on DOAS for fire emergency rescue[J]. Journal of Optoelectronics?Laser, 2018, 29(3): 314–317.

[33] Gao Q, Weng W B, Li B, et al. Gas temperature measurement using Differential Optical Absorption Spectroscopy (DOAS)[J]. Applied Spectroscopy, 2018, 72(7): 1014–1020.

[34] Meier A C, Sch?nhardt A, B?sch T, et al. High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT[J]. Atmospheric Measurement Techniques, 2017, 10(5): 1831–1857.

[35] Stutz J, Hurlock S C, Colosimo S F, et al. A novel dual-LED based long-path DOAS instrument for the measurement of aromatic hydrocarbons[J]. Atmospheric Environment, 2016, 147: 121–132.

[36] 吕默, 王一丁, 陈晨. 采用长光程差分吸收光谱技术(LP-DOAS)的中红外痕量一氧化碳检测仪[J]. 光谱学与光谱分析, 2017, 37(7): 2278–2282.

    Lv M, Wang Y D, Chen C. Development of mid-infrared trace-CO detector with Long-Path Differential Optical Absorption Spectroscopy (LP-DOAS)[J]. Spectroscopy and Spectral Analysis, 2017, 37(7): 2278–2282.

[37] Lee J, Kim K H, Kim Y J, et al. Application of a Long-Path Differential Optical Absorption Spectrometer (LP-DOAS) on the measurements of NO2, SO2, O3, and HNO2 in Gwangju, Korea[J]. Journal of Environmental Management, 2008, 86(4): 750–759.

[38] Kanaya Y, Irie H, Takashima H, et al. Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations[J]. Atmospheric Chemistry and Physics, 2014, 14(15): 7909–7927.

[39] Jin J L, Ma J Z, Lin W L, et al. MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China[J]. Atmospheric Environment, 2016, 133: 12–25.

[40] Wang Y, Lampel J, Xie P H, et al. Ground-based MAX-DOAS observations of tropospheric aerosols, NO2, SO2 and HCHO in Wuxi, China, from 2011 to 2014[J]. Atmospheric Chemistry and Physics, 2017, 17(3): 2189–2215.

[41] Varma R M, Ball S M, Brauers T, et al. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers[J]. Atmospheric Measurement Techniques, 2013, 6(11): 3115–3130.

[42] Thalman R M. Development of Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) and application to laboratory and field measurements of trace gases and aerosols[D]. Colorado: University of Colorado, 2013.

[43] 焦洋, 徐亮, 高闽光, 等. 污染气体扫描成像红外被动遥测技术研究[J]. 光谱学与光谱分析, 2012, 32(7): 1754–1757.

    Jiao Y, Xu L, Gao M G, et al. Investigation on remote measurement of air pollution by a method of infrared passive scanning imaging[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1754–1757.

[44] 焦洋, 徐亮, 高闽光, 等. 污染气团扫描式FTIR被动遥测系统[J]. 激光与红外, 2013, 43(9): 1021–1024.

    Jiao Y, Xu L, Gao M G, et al. Scanning passive FTIR remote sensing system for pollution gas[J]. Laser & Infrared, 2013, 43(9): 1021–1024.

[45] 焦洋. 污染气体FTIR被动扫描成像遥测技术研究[D]. 合肥: 中国科学院大学, 2013.

    Jiao Y. Study on remote sensing of pollutant gases by passive scanning imaging FIIR spectrometry[D]. Hefei: University of Chinese Academy of Sciences, 2013.

[46] 冯明春, 徐亮, 刘文清, 等. 基于MODTRAN模型使用被动傅里叶变换红外光谱技术对生物气溶胶的探测研究[J]. 物理学报, 2016, 65(1): 014210.

    Feng M C, Xu L, Liu W Q, et al. Investigation of detecting biological aerosol by passive fourier transform infrared spectroscopy technology based on MODTRAN model[J]. Acta Physica Sinica, 2016, 65(1): 014210.

[47] 夏卿, 左洪福, 李绍成, 等. 航空发动机尾气的FTIR被动遥感[J]. 光谱学与光谱分析, 2009, 29(3): 616–619.

    Xia Q, Zuo H F, Li S C, et al. Remote passive sensing of aeroengine exhausts using FTIR system[J]. Spectroscopy and Spectral Analysis, 2009, 29(3): 616–619.

[48] Selimovic V, Yokelson R J, Warneke C, et al. Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX[J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2929–2948.

[49] Selimovic V, Yokelson R J, Warneke C, et al. Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX[J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2929–2948.

[50] Schütze C, Sauer U. Challenges associated with the atmospheric monitoring of areal emission sources and the need for optical remote sensing techniques—an open-path Fourier transform infrared (OP-FTIR) spectroscopy experience report[J]. Environmental Earth Sciences, 2016, 75(10): 919.

[51] Davis C O. Applications of hyperspectral imaging in the coastal ocean[J]. Proceedings of SPIE, 2002, 4816: 33–41.

[52] Gurram P, Kwon H. Ensemble learning based on multiple kernel learning for hyperspectral chemical plume detection[J]. Proceedings of SPIE, 2010, 7695: 76951U.

[53] Farley V, Vallières A, Chamberland M, et al. Performance of the FIRST: a long-wave infrared hyperspectral imaging sensor[J]. Proceedings of SPIE, 2006, 6398: 63980T.

[54] Farley V, Vallières A, Villemaire A, et al. Chemical agent detection and identification with a hyperspectral Imaging infrared sensor[J]. Proceedings of SPIE, 2007, 6739: 673918.

[55] Hinnrichs M, Massie M A. New approach to imaging spectroscopy using diffractive optics[J]. Proceedings of SPIE, 1997, 3118: 194–205.

[56] 李家琨, 金伟其, 王霞, 等. 气体泄漏红外成像检测技术发展综述[J]. 红外技术, 2014, 36(7): 513–520.

    Li J K, Jin W Q, Wang X, et al. Review of gas leak infrared imaging detection technology[J]. Infrared Technology, 2014, 36(7): 513–520.

[57] Cosofret B R, Chang S, Finson M L, et al. AIRIS standoff multispectral sensor[J]. Proceedings of SPIE, 2009, 7304: 73040Y.

[58] Wurst N P, Meola J, Fiorino S T. Improved atmospheric characterization for hyperspectral exploitation[J]. Proceedings of SPIE, 2017, 10198: 101980B.

[59] Kastek M, Pi?tkowski T, Trzaskawka P. Infrared imaging fourier transform spectrometer as the stand-off gas detection system[J]. Metrology and Measurement Systems, 2011, 18(4): 607–620.

[60] Omruuzun F, Cetin Y Y. Endmember signature based detection of flammable gases in LWIR hyperspectral images[J]. Proceedings of SPIE, 2015, 9486: 948612.

[61] Sabbah S, Harig R, Rusch P, et al. Remote sensing of gases by hyperspectral imaging: system performance and measurements[J]. Optical Engineering, 2012, 51(11): 111717.

[62] Zheng W J, Lei Z G, Yu C C, et al. Research on ground-based LWIR hyperspectral imaging remote gas detection[J]. Spectroscopy and Spectral Analysis, 2016, 36(2): 599–606.

[63] Zheng W J, Lei Z G, Yu C C, et al. First results of ground-based LWIR hyperspectral imaging remote gas detection[J]. Proceedings of SPIE, 2014, 9298: 929802.

[64] Butz A, Guerlet S, Hasekamp O, et al. Toward accurate CO2 and CH4 observations from GOSAT[J]. Geophysical Research Letters, 2011, 38(14): L14812.

[65] Oishi Y, Ishida H, Nakajima T Y, et al. Preliminary verification for application of a support vector machine-based cloud detection method to GOSAT-2 CAI-2[J]. Atmospheric Measurement Techniques, 2018, 11(5): 2863–2878.

[66] Frankenberg C, Pollock R, Lee R A M, et al. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements[J]. Atmospheric Measurement Techniques, 2015, 8(1): 301–313.

[67] 毕研盟, 王倩, 杨忠东, 等. 星载近红外高光谱CO2遥感进展[J]. 中国光学, 2015, 8(5): 725–735.

    Bi Y M, Wang Q, Yang Z D, et al. Advances on space-based hyper spectral remote sensing for atmospheric CO2 in near infrared band[J]. Chinese Optics, 2015, 8(5): 725–735.

[68] Chien S, Silverman D, Davies A G, et al. Onboard science processing concepts for the HyspIRI mission[J]. IEEE Intelligent Systems, 2009, 24(6): 12–19.

[69] 孙允珠, 蒋光伟, 李云端, 等. 高光谱观测卫星及应用前景[J]. 上海航天, 2017, 34(3): 1–13.

    Sun Y Z, Jiang G W, Li Y D, et al. Hyper-spectral observation satellite and it’s application prospects[J]. Aerospace Shanghai, 2017, 34(3): 1–13.

沈英, 邵昆明, 吴靖, 黄峰, 郭禹泽. 气体光学检测技术及其应用研究进展[J]. 光电工程, 2020, 47(4): 190280. Shen Ying, Shao Kunming, Wu Jing, Huang Feng, Guo Yuze. Optical gas detection: key technologies and applications review[J]. Opto-Electronic Engineering, 2020, 47(4): 190280.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!