中国激光, 2015, 42 (4): 0406006, 网络出版: 2015-04-02   

激光-电弧复合焊焊缝合金元素分布的研究

Distribution of Wire Feeding Elements in Laser-arc Hybrid Welds
作者单位
1 中国钢研科技集团有限公司, 新冶高科技集团有限公司, 北京 100081
2 物质·材料研究机构, 筑波 305-0047
3 中国钢研科技集团有限公司, 北京 100081
摘要
激光-电弧复合焊接相对激光焊接的优势之一是通过焊接材料的添加,调整焊缝的合金元素成分,改善焊缝组织与性能。焊接材料添加的合金元素在焊缝中的均匀分布是体现激光-电弧复合焊接这一优势的关键。然而,对于窄而深的激光-电弧复合焊焊缝,实现合金元素的均匀分布是非常困难的。研究了焊接工艺参数对CO2激光-熔化极气体保护(GMA)复合焊焊缝合金元素分布的影响规律,并讨论了熔池流动行为与合金元素分布均匀性的关系。结果表明,随着焊接速度的减小,CO2 激光-GMA 复合焊焊缝合金元素的分布趋向于均匀分布;随着坡口间隙的增大,焊缝合金元素均匀程度越高。焊接方向为激光在前时,激光-电弧复合焊接熔池流动为内向流动时(即熔池表面从熔池后部向小孔流动,并且小孔后沿液体向下流动),焊缝合金元素分布较均匀,其均匀性高于焊接方向为电弧在前时的情况。焊接方向对焊缝合金元素分布的影响规律主要取决于电弧拖拽力和熔滴对熔池冲击力的方向。当焊接方向为激光在前时,电弧拖拽力和熔滴对熔池冲击力指向小孔方向,促进了熔池内向流动。
Abstract
Compared with laser welding, laser-arc hybrid welding has a lot of advantages. One of these advantages is to improve the weld metal microstructure and mechanical properties by feeding welding materials. In this case, it is essential to achieve the homogeneous distribution of alloying elements. In deep and narrow hybrid welds, however, it is very difficult to attain the homogeneous distribution. The effect of welding parameters on the distribution of wire feeding elements is investigated during CO2 laser and gas metal arc (GMA) hybrid welding process, and the influence of fluid flow behaviour on the homogeneity of weld metal is also discussed. The results indicate that the homogeneity of weld metal is improved when decreasing the welding speed or increasing the gap width. When the welding direction is leading laser, the molten metal flows from the rear end to the keyhole on the pool surface and then goes down just behind the keyhole during hybrid welding, namely inward flow, resulting in almost homogeneous distribution of alloying elements. The distribution of alloying elements is more homogeneous in leading laser compared with leading arc, since both of the drag force of the plasma jet and momentum of droplet direct to the keyhole, promoting the inward flow in leading laser.
参考文献

[1] 陈武柱. 激光焊接与切割质量控制[M]. 北京: 机械工业出版社, 2010.

    Chen Wuzhu. Quality Control of Laser Welding and Cutting[M]. Beijing: China Machine Press, 2010.

[2] C Bagger, F O Olsen. Review of laser hybrid welding[J]. J Laser Appl, 2005, 17(1): 2-14.

[3] G L Qin, Z Lei, S Y Lin. Effects of Nd∶YAG laser+pulsed MAG arc hybrid welding parameters on its weld shape[J]. Sci Technol Weld Join, 2007, 12(1): 79-86.

[4] 崔丽, 贺定勇, 李晓延, 等. 焊接方向对光纤激光-MIG 复合焊接钛合金焊缝成形的影响[J]. 中国激光, 2011, 38(1): 0103002.

    Cui Li, He Dingyong, Li Xiaoyan, et al.. Effects of welding direction on weld shape of fiber laser-MIG hybrid welded titanium alloys [J]. Chinese J Lasers, 2011, 38(1): 0103002.

[5] 雷正龙, 檀财旺, 陈彦宾, 等. X80管线钢光纤激光-MAG 复合焊接打底层组织及性能[J]. 中国激光, 2013, 40(4): 0403002.

    Lei Zhenglong, Tan Caiwang, Chen Yanbin, et al.. Microstructure and mechanical properties of X80 pipeline steel backing welded joint by fiber laser-MAG hybrid welding [J]. Chinese J Lasers, 2013, 40(4): 0403002.

[6] 陈洋, 吴世凯, 肖荣诗. SUS301L不锈钢CO2激光-MIG 复合焊接头组织性能研究[J]. 中国激光, 2014, 41(1): 0103004.

    Chen Yang, Wu Shikai, Xiao Rongshi. Mircostructure and performance of CO2-MIG hybrid welding of SUS301L stainless steel[J]. Chinese J Lasers, 2014, 41(1): 0103004.

[7] P L Moore, D S Howse, E R Wallach. Microstructures and properties of laser/arc hybrid welds and autogenous laser welds in pipeline steels[J]. Sci Technol Weld Join, 2004, 9(4): 314-322.

[8] S Fujinaga, R Ohashi, T Urakami, et al.. Development of all position YAG laser butt welding process with filler wire[J]. Quarterly Journal of the Japan Welding Society, 2004, 22(3): 369-374.

[9] Z J Liu, M Kutsuna, G J Xu. Microstructure and mechanical properties of CO2 laser-MAG hybrid weld of high strength steel[J]. Quarterly Journal of the Japan Welding Society, 2006, 24(4): 344-349.

[10] M Leimser, A Russ, F Dausinger, et al.. Methods to influence the melt pool dynamics and the element distribution in laser welding of aluminium alloys with filler wire[C]. Proc ICALEO, 2004.

[11] A Mahrle, J Schmidt. The influence of fluid flow phenomena on the laser beam welding process[J]. Int J Heat Fluid Fl, 2002, 23(3): 288-297.

[12] C Limmaneevichitr, S Kou. Experiments to simulate effect of Marangoni convection on weld pool shape[J]. Weld J, 2000, 79(8): 231-237.

[13] T Fuhrich, P Berger, H Hügel. Marangoni effect in laser deep penetration welding of steel[J]. J Laser Appl, 2001, 13(5): 178-186.

[14] R Rai, S M. Kelly, R P Martukanitz, et al.. A convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural steel[J]. Metall Mater Trans A, 2008, 39A(1): 98-112.

[15] W I Cho, S J Na, M H Cho, et al.. Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding[J]. Comp Mater Sci, 2010, 49(4): 792-800.

[16] B Ribic, R Rai, T DebRoy. Heat Transfer and fluid flow in GTA/laser hybrid welding[C]. 8th International Welding Symposium, 2007. AW2-5.

赵琳, 塚本进, 荒金吾郎, 张岩, 田志凌. 激光-电弧复合焊焊缝合金元素分布的研究[J]. 中国激光, 2015, 42(4): 0406006. Zhao Lin, Tsukamoto Susumu, Arakane Goro, Zhang Yan, Tian Zhiling. Distribution of Wire Feeding Elements in Laser-arc Hybrid Welds[J]. Chinese Journal of Lasers, 2015, 42(4): 0406006.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!