激光技术, 2017, 41 (5): 754, 网络出版: 2017-09-21   

多次激光冲击Ti-6Al-4V钛合金表面纳米化研究

Nanocrystallization of Ti-6Al-4V alloy by multiple laser shock processing
作者单位
江苏大学 机械工程学院, 镇江 212013
摘要
为了研究激光冲击Ti-6Al-4V钛合金下的表面纳米化和微观结构的演变特性, 采用短脉冲Nd∶YAG激光器对Ti-6Al-4V钛合金表面分别进行了激光冲击实验, 得到了不同激光冲击次数下钛合金表面的微观组织和相应表面硬度。随着激光冲击次数增加, 晶粒尺寸逐渐减小并形成纳米晶粒; 冲击3次以上时, 纳米晶数量明显增多、尺寸分布更加均匀, 表面出现取向更加随机的等轴纳米晶; 冲击5次后, 随着冲击次数增加, 钛合金表面纳米晶粒尺寸没有出现明显降低的趋势, 始终保持50nm~130nm; 不同冲击次数下纳米层的深度不会明显增加, 纳米层深度约为15μm~20μm; 冲击次数5次以上后, 钛合金表面硬度趋于稳定, 最大值约为525HV~530HV。结果表明, Ti-6Al-4V钛合金表面纳米化程度随着激光冲击次数的增加而提高; 在5次激光冲击后钛合金表面的纳米化程度达到渐饱和状态, 表面具有分布较好的纳米晶和较高的硬度。这表明多次激光冲击钛合金表面可以实现晶粒从微米级向纳米级转化。
Abstract
In order to study the surface nanocrystallization and microstructure evolution of Ti-6Al-4V alloy, the samples of Ti-6Al-4V alloy were peened with different times by using short-pulse Nd∶YAG laser, the corresponding surface microstructure and microhardness were obtained. With the increase of the number of laser impact, the grain size gradually decreased and nanocrystals were formed. After more than three impacts, the number of nanocrystals obviously increased with a more uniform size distribution and the orientation of equiaxed nanocrystals on the surface became more random. After more than 5 times of laser impacts, the nanocrystalline grain size of Ti-6Al-4V titanium alloy did not decrease significantly with the increase of the number of laser impacts, and maintained at 50nm~130nm. The depth of the nanostructure layer was not increased obviously and was about 15μm~20μm. After more than 5 times of laser impacts, the titanium alloy surface hardness tended to be stable, and the maximum hardness was about 525HV~530HV. The results show that the nanocrystallization degree of Ti-6Al-4V titanium alloy improves with the increase of the number of laser impacts. After five impacts, the nanocrystallization of the titanium alloy surface is saturated. The surface has a better nanocrystalline distribution and higher hardness. The study indicates that the surface of titanium alloy through multiple laser impacts can prompt the grain size transformation from micron to nanometer.
参考文献

[1] ZENG L Y, ZHAO Y Q, HONG Q, et al. Research and development of high temperature titanium alloys at 600℃[J]. Titanium Industry Progress, 2012, 29(5): 1-5 (in Chinese).

[2] FU Y Y, SONG Q M, HUI S X, et al. Research and application of typical aerospace titanium alloys[J]. Chinese Journal of Rare Metals, 2006, 30(6): 850-856 (in Chinese).

[3] XU G D, WANG F E. Development and application on high-temperature Ti-based alloys[J]. Chinese Journal of Rare Metals, 2008, 32(6): 774-780 (in Chinese).

[4] LU K, LU J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science and Engineering, 2004, A375/377(1): 38-45.

[5] WEN M, LIU G, GU J F, et al. Dislocation evolution in titanium during surface severe plastic deformation[J]. Applied Surface Science, 2009, 255(12): 6097-6102.

[6] ZHU K Y, VASSEL A, BRISSET F, et al. Nanostructure formation mechanism of α-titanium using SMAT[J]. Acta Materialia, 2004, 52(14): 4101-4110.

[7] GUO Zh Q, GE L L, YUAN H, et al. Surface nano-crystallization of TC4 titanium alloy and its thermal stability[J]. Transactions of Materials and Heat Treatment, 2012, 33(3): 114-118(in Chinese).

[8] DING H, SHIN Y C. Dislocation density-based modeling of subsurface grain refinement with laser-induced shock compression[J]. Computational Materials Science, 2012, 53(1): 79-88.

[9] LIU H X, HU Y, WANG X, et al. Grain refinement progress of pure titanium during laser shock forming (LSF) and mechanical property characterizations with nanoindentation[J]. Materials Science and Engineering, 2013, A564(564):13-21.

[10] REN X D, ZHOU W F, LIU F F, et al. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing[J]. Applied Surface Science, 2016, 363: 44-49.

[11] HU Z R, TONG G Q, CHEN Ch J, et al. Technology of laser nano-material surface engineeering[J]. Laser Technology, 2014, 38(6): 764-770 (in Chinese).

[12] CHE Z, YANG J, GONG S, et al. Self-nanocrystallization of Ti-6Al-4V alloy surface induced by laser shock processing[J]. Rare Metal Materials and Engineering, 2014, 43(5): 1056-1060.

[13] ZHANG J W, LUO X M, MA H, et al. Surface nano-crystallization of aero-aluminum alloy 2A02 induced by laser shocking[J]. Heat Treatment of Metals, 2011, 36(9): 22-26(in Chinese).

[14] LIU Y G, LI M Q, LIU H J. Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening[J]. Journal of Alloys and Compounds, 2016, 685: 186-193.

[15] LOU S, LI Y, ZHOU L, et al. Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing[J]. Materials & Design, 2016, 104: 320-326.

[16] ZHOU L, HE W, LUO S, et al. Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel[J]. Journal of Alloys and Compounds, 2016, 655: 66-70.

[17] REN X D, RUAN L, HUANGFU Y Zh, et al. Experimental research of laser shock processing 6061-T651 aluminum alloy during elevated temperature[J]. Chinese Journal of Lasers, 2012, 39(3): 303010(in Chinese).

[18] YILBAS B S, SHUJA S Z, ARIF A. Laser-shock processing of steel[J]. Journal of Materials Processing Technology, 2003, 135(1): 6-17.

[19] HUANG Y, JIANG Y F, JIN H, et al. Propagation of shock wave induced by ring laser and its effect on spalling[J]. Laser Technology, 2013, 37(3): 301-305 (in Chinese).

[20] XU S D, REN X D, ZHOU W F, et al. Research of cell-grain refinement and dislocation strengthening of laser shock processing on GH2036 alloy[J]. Chinese Journal of Lasers, 2016, 43(1) : 0103001 (in Chinese).

[21] ZHOU L, LI Y, HE W, et al. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering, 2013, A578(8): 181-186.

[22] WANG M, LIN C, MA C. Mechanism of surface nanocrystallization of Ti-6Al-4V alloy[J]. Chinese Journal of Rare Metals, 2011, 35(5): 633-638(in Chinese).

[23] FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):75-84.

[24] KALAINATHAN S, PRABHAKARAN S. Recent development and future perspectives of low energy laser shock peening[J]. Optics & Laser Technology, 2016, 81: 137-144.

[25] MOSHTAGHIOUN B M, GOMEZ-GARCIA D, DOMINGUEZ-RODRIGUEZ A, et al. Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics[J]. Journal of the European Ceramic Society, 2016, 36(7): 1829-1834.

[26] LIU X, YUAN F, WEI Y. Grain size effect on the hardness of nanocrystal measured by the nanosize indenter[J]. Applied Surface Science, 2013, 279(15):159-166.

杨进德, 周王凡, 杨涛, 刘帆帆, 任旭东. 多次激光冲击Ti-6Al-4V钛合金表面纳米化研究[J]. 激光技术, 2017, 41(5): 754. YANG Jinde, ZHOU Wangfan, YANG Tao, LIU Fanfan, REN Xudong. Nanocrystallization of Ti-6Al-4V alloy by multiple laser shock processing[J]. Laser Technology, 2017, 41(5): 754.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!