光学学报, 2008, 28 (s1): 60, 网络出版: 2008-08-16  

InP基InGaAlAs/InGaAsSb应变量子阱激光器的子带跃迁计算

Inter-Subband Transition Calculation of InP Based InGaAlAs/InGaAsSb Strained Quantum Well Lasers
作者单位
长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
摘要
采用有效质量模型下的4×4 Luttinger-Kohn哈密顿量矩阵对In0.53Ga0.39Al0.08As/InxGa1-xAs0.9Sb0.1量子阱结构的能带进行了计算。求得了C1-HH1跃迁波长随In组分及阱宽的变化关系,并采用力学平衡模型计算了此应变材料体系在生长时的临界厚度。结果表明,在结构设计和材料生长中采用合适的材料组分和阱宽,在InP基InGaAlAs/InGaAsSb应变量子阱激光器中能够实现1.6~2.5 μm近中红外波段的激射波长。
Abstract
In0.53Ga0.39Al0.08As/InxGa1-xAs0.9Sb0.1 quantum well band structure has been calculated with the effective-mass model and 4×4 Luttinger-Kohn Hamiltonian matrix method. The relations of C1-HH1 transition wavelength versus In composition and well width have been obtained and discussed. Mechanical equilibrium model has been used to calculate the critical thickness for the strain material system. It is concluded that by appropriate structure design and adjustment of composition and quantum well parameters, the InP based InGaAlAs/InGaAsSb strained laser system can readily realize laser radiation in the wavelength range of 1.6~2.5 μm.
参考文献

[1] . 室温工作的AlGaAsSb/InGaAsSb 2 μm多量子阱脊波导半导体激光器[J]. 稀有金属, 2004, 28(3): 574-576.

    . . Room temperature AlGaAsSb/InGaAsSb 2 μm ridge-waveguide multi-quantum-well lasers[J]. Chin. J. Rare Metals, 2004, 28(3): 574-576.

[2] . MBE生长AlGaAsSb/InGaAsSb材料的应变控制[J]. 稀有金属, 2004, 28(3): 530-532.

    . . Strained AlGaAsSb/InGaAsSb materials grown by molecular beam epitaxy[J]. Chin. J. Rare Metals, 2004, 28(3): 530-532.

[3] . . Molecular beam epitaxial growth and characterization of InGaAsSb quantum wellstructures on InP for lasers operating at 2 μm wavelength region[J]. Technical Report of IEICE, 2003, 103(47): 31-36.

[4] . 用于1.44 μm半导体激光器的GaInAs/InGaAsP量子阱结构的设计[J]. 稀有金属, 2004, 28(3): 511-515.

    . Design of GaInAs/InGaAsP quantum wells for 1.44 μm semiconductor lasers[J]. Chin. J. Rare Metals, 2004, 28(3): 511-515.

[5] . GaxIn1-xAs/GaInAsP应变量子阱结构能带的计算[J]. 功能材料与器件学报, 2002, 8(3): 218-222.

    . Calculation of band structure of GaxIn1-xAs/GaInAsP strained quantum wells[J]. J. Functional Materials and Devices, 2002, 8(3): 218-222.

[6] . Efficient band-structure calculation of strained quantum wells[J]. Phys. Rev., 1991, 43(12): 9649-9661.

[7] . InGaAs/InGaAlAs应变补偿量子阱激光器及其温度特性研究[J]. 高技术通讯, 2000, 10(2): 50-52.

    . InGaAs/InGaAlAs strain-compensated multiple-quantum-well lasers with improved temperture characteristic[J]. High Technology Letters, 2000, 10(2): 50-52.

[8] 李建军, 韩军, 邓军 等. 低阈值高效率InAlGaAs量子阱808 nm激光器[J]. 中国激光, 2006, 33(9): 1159~1162

    Li Jianjun, Han Jun, Deng Jun et al.. InAlGaAs Quantum well 808 nm laser diode with low threshold current and high efficiency[J]. Chin. J. Lasers, 2006, 33(9): 1159~1162

[9] 马宏, 易新建, 金锦炎 等. MOVPE生长1.3 μm无致冷AlGaInAs/InP应变补偿量子阱激光器研究[J]. 中国激光, 2002, 29(3): 193~196

    Ma Hong, Yi Xinjian, Jin Jinyan et al.. Study on MOVPE growth of 1.3 μm uncooled AlGaInAs/InP strain-compensated quantum well lasers[J]. Chin. J. Lasers, 2002, 29(3): 193~196

[10] 张洪波, 韦欣, 朱晓鹏 等. 高饱和电流14xx nm应变量子阱激光器的研制[J]. 中国激光, 2005, 32(2): 161~163

    Zhang Hongbo, Wei Xin, Zhu Xiaopeng et al.. High-saturation current 14xx nm strained quantum well lasers[J]. Chin. J. Lasers, 2005, 32(2): 161~163

金哲军, 刘国军, 李占国, 李梅. InP基InGaAlAs/InGaAsSb应变量子阱激光器的子带跃迁计算[J]. 光学学报, 2008, 28(s1): 60. Jin Zhejun, Liu Guojun, Li Zhanguo, Li Mei. Inter-Subband Transition Calculation of InP Based InGaAlAs/InGaAsSb Strained Quantum Well Lasers[J]. Acta Optica Sinica, 2008, 28(s1): 60.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!