激光与光电子学进展, 2017, 54 (9): 090601, 网络出版: 2017-09-06   

基于双芯光子晶体光纤的高灵敏度椭圆侧芯表面等离子体共振折射率传感特性 下载: 683次

High Sensitive Elliptic Side Core Surface Plasmon Resonance Refractive Index Sensing Characteristics Based on Dual-Core Photonic Crystal Fiber
梁红勤 1,2,*刘彬 1,2陈佳 3刘云凤 1,2胡金凤 1,2
作者单位
1 南昌航空大学无损检测与光电传感技术及应用国家地方联合工程实验室, 江西 南昌 330063
2 南昌航空大学江西省光电检测技术工程实验室, 江西 南昌 330063
3 南昌工学院机械与车辆工程学院, 江西 南昌 330108
摘要
提出了一种基于双芯光子晶体光纤(PCF)的高灵敏度椭圆侧芯表面等离子体共振(SPR)折射率传感模型。在各向异性的完美匹配层边界条件下利用全矢量有限元法对传感器特性进行了数值仿真。研究发现:在椭圆侧芯中涂覆金属银纳米层可以实现SPR, 共振峰对检测孔的折射率变化具有很高的传感灵敏度; 与圆形结构相比, 所提椭圆侧芯结构中的纤芯基模和金属表面等离子体激元(SPP)模式更易实现相位匹配; 当椭圆率为0.7时,灵敏度在1.45~1.50的折射率范围内可达10412 nm·RIU-1, 且传感曲线线性度高; 椭圆侧芯结构能够有效抑制高阶SPP模式, 避免基模与多个SPP模式耦合形成干扰。
Abstract
A model of refractive index sensing with high sensitivity elliptic side core surface plasmon resonance (SPR) based on dual-core photonic crystal fiber (PCF) is proposed. Properties of a sensor are analyzed by the full vector finite element method with the boundary condition of anisotropic perfectly matched layer. Results show that SPR can be realized in elliptic side core coated with silver nano-layer, and the resonance peak is highly sensitive to the changing refractive index of inspection hole. Compared with that of the circular structure, the phase matching between the fundamental mode of fiber core and the metal surface plasmon polariton (SPP) mode of the elliptic side core structure is easier to implement. When the ellipticity is 0.7, a sensitivity of 10412 nm·RIU-1 in a refractive index range from 1.45 to 1.50 can be obtained, and the sensing curve has high linearity. In addition, the elliptic side core structure can effectively restrain the high-order SPP mode. The interference introduced by the coupling between fundamental mode and many SPP modes can be avoided.
参考文献

[1] Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures[J]. MRS Bulletin, 2005, 30(5): 338-348.

[2] 施伟华, 尤承杰, 吴 静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器[J]. 物理学报, 2015, 64(22): 224221.

    Shi Weihua, You Chengjie, Wu Jing. D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling[J]. Acta Physica Sinica, 2015, 64(22): 224221.

[3] 施伟华, 吴 静. 基于表面等离子体共振和定向耦合的光子晶体光纤传感器[J]. 光学学报, 2015, 35(2): 0206002.

    Shi Weihua, Wu Jing. Photonic crystal fiber sensor based on surface plasmonic and directional resonance coupling[J]. Acta Optica Sinica, 2015, 35(2): 0206002.

[4] 罗云瀚, 毛培玲, 陈超英, 等. 光纤耦合三角形金柱阵列的等离子体共振[J]. 光子学报, 2015, 44(4): 0406004.

    Luo Yunhan, Mao Peiling, Chen Chaoying, et al. Side-polished fiber coupled plasmon resonance based on triangle nano-rod array[J]. Acta Photonica Sinica, 2015, 44(4): 0406004.

[5] 陈强华, 刘景海, 罗会甫, 等. 一种基于表面等离子共振的液体折射率测量系统[J]. 光学学报, 2015, 35(5): 0512002.

    Chen Qianghua, Liu Jinghai, Luo Huifu, et al. Refractive index measurement system of liquid based on surface plasmon resonance[J]. Acta Optica Sinica, 2015, 35(5): 0512002.

[6] 程 慧, 黄朝峰, 段子渊. SPR生物传感器及其应用进展[J]. 中国生物工程杂志, 2003, 23(5): 46-49.

    Cheng Hui, Huang Zhaofeng, Duan Ziyuan. Advances in the application of SPR biosensors[J]. China Biotechnology, 2003, 23(5): 46-49.

[7] Homola J. Electromagnetic theory of surface plasmons[M]. Berlin Heidelberg: Springer, 2006: 3-44.

[8] 张倩昀, 曾 捷, 李继峰, 等. 基于辅助电介质层的棱镜表面等离子体共振效应研究[J]. 物理学报, 2014, 63(3): 034207.

    Zhang Qianyun, Zeng Jie, Li Jifeng, et al. Study of prism surface plasmon resonance effect based on dielectric-aided layer[J]. Acta Physica Sinica, 2014, 63(3): 034207.

[9] Patskovsky S, Kabashin A V, Meunier M, et al. Properties and sensing characteristics of surface-plasmon resonance in infrared light[J]. Journal of the Optical Society of America A, 2003, 20(8): 1644-1650.

[10] Kasunic K J. Comparison of Kretschmann-Raether angular regimes for measuring changes in bulk refractive index[J]. Applied Optics, 2000, 39(1): 61-64.

[11] Zhu J H, Huang X G, Tao J, et al. Nanometeric plasmonic refractive index senor[J]. Optics Communications, 2012, 285(13/14): 3242-3245.

[12] Du W, Zhao F. Surface plasmon resonance based silicon carbide optical waveguide sensor[J]. Materials Letters, 2014, 115(15): 92-95.

[13] Tang T T. Refractive index detection based on a prism-waveguide coupling system with double-negative material[J]. Optik -International Journal for Light and Electron Optics, 2013, 124(20): 4526-4528.

[14] Mishra A K, Mishra S K, Gupta B D. SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region[J]. Optics Communications, 2015, 344: 86-91.

[15] Shuai B B, Xia L, Zhang Y T, et al. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity[J]. Optics Express, 2012, 20(6): 5974-5986.

[16] Zhao Y, Deng Z Q, Li J. Photonic crystal fiber based surface plasmon resonance chemical sensors[J]. Sensors and Actuators B: Chemical, 2014, 202: 557-567.

[17] Luan N N, Wang R, Lü W H, et al. Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core[J]. Optics Express, 2015, 23(7): 8576-8582.

[18] Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963.

[19] Kim B Y, Blake J N, Huang S Y, et al. Use of highly elliptical core fibers for two-mode fiber devices[J]. Optics Letters, 1987, 12(9): 729-731.

[20] 曹 晔, 李荣敏, 童峥嵘. 一种新型高双折射光子晶体光纤特性研究[J]. 物理学报, 2013, 62(8): 084215.

    Cao Ye, Li Rongmin, Tong Zhengrong. Investigation of a new kind of high birefringence photonic crystal fiber[J]. Acta Physica Sinica, 2013, 62(8): 084215.

[21] 刘晓东, 李曙光, 侯蓝田. 光子晶体光纤的导波模式与色散特性[J]. 物理学报, 2003, 52(11): 2811-2817.

    Liu Xiaodong, Li Shuguang, Hou Lantian. The study of waveguide mode and dispersion property in photonic crystal fibres[J]. Acta Physica Sinica, 2003, 52(11): 2811-2817.

[22] 王二垒, 姜海明, 谢 康, 等. 一种高双折射高非线性多零色散波长光子晶体光纤[J]. 物理学报, 2014, 63(13): 134210.

    Wang Erlei, Jiang Haiming, Xie Kang, et al. Photonic crystal fibers with high nonlinearity, large birefringence and multiple zero dispersion-wavelength[J]. Acta Physica Sinica, 2014, 63(13): 134210.

[23] Husakou A V, Herrmann J. Supercontinuum generation of higher-order solitons by fission in photonic crystalfibers[J]. Physical Review Letters, 2001, 87(20): 203901.

[24] 刘 洁, 杨昌喜, Claire Gu, 等. 一种新型高非线性色散平坦光子晶体光纤结构[J]. 光学学报, 2006, 26(10): 1569-1574.

    Liu Jie, Yang Changxi, Claire Gu, et al. A novel photonic crystal fiber with high nonlinearity and flattened dispersion[J]. Acta Optica Sinica, 2006, 26(10): 1569-1574.

[25] 雷景丽, 李晓晓, 王道斌, 等. 双包层平坦色散光子晶体光纤的设计与性能研究[J]. 光学学报, 2015, 35(s1): s106002.

    Lei Jingli, Li Xiaoxiao, Wang Daobin, et al. Design and study on characteristics of double-clad photonic crystal fibers with flattened dispersion[J]. Acta Optica Sinica, 2015, 35(s1): s106002.

[26] 姜凌红, 郑 义, 郑 凯, 等. 液芯高双折射率光子晶体光纤的特性研究[J]. 光子学报, 2014, 43(9): 0906003.

    Jiang Linghong, Zheng Yi, Zheng Kai, et al. Investigation of a liquid-core photonic crystal fiber with high briefringence[J]. Acta Photonica Sinica, 2014, 43(9): 0906003.

[27] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift für Physik A Hadrons and Nuclei, 1968, 216(4): 398-410.

[28] Dash J N, Jha R. On the performance of graphene-based D shaped photonic crystal fibre biosensor using surface plasmon resonance[J]. Plasmonics, 2015, 10(5): 1123-1131.

[29] Bing P B, Li Z Y, Yao J Q, et al. Effects of heterogeneity on the surface plasmon resonance biosensor based on three-hole photonic crystal fiber[J]. Optical Engineering, 2013, 52(5): 054401.

[30] Akowuah E K, Gorman T, Ademgil H, et al. Numerical analysis of a photonic crystal fiber for biosensing applications[J]. IEEE Journal of Quantum Electronics, 2012, 48(11): 1403-1410.

[31] Bing P B, Li Z Y, Yuan S, et al. Surface plasmon resonance biosensor based on large size square-lattice photonic crystal fiber[J]. Journal of Modern Optics, 2015, 63(8): 793-797.

[32] Hassani A, Skorobogatiy M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics[J]. Optics Express, 2006, 14(24): 11616-11621.

[33] Hassani A, Skorobogatiy M. Design criteria for microstructured-optical-fiber based surface-plasmon-resonance sensors[J]. Journal of the Optical Society of America B, 2007, 24(6): 1423-1429.

[34] Hassani A, Skorobogatiy M. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness[J]. Journal of the Optical Society of America B, 2009, 26(8): 1550-1557.

[35] Rakic' A D, Djuriic' A B, Elazar J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 1998, 37(22): 5271-5283.

[36] Hautakorpi M, Mattinen M, Ludvigsen H. Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber[J]. Optics Express, 2008, 16(12): 8427-8432.

梁红勤, 刘彬, 陈佳, 刘云凤, 胡金凤. 基于双芯光子晶体光纤的高灵敏度椭圆侧芯表面等离子体共振折射率传感特性[J]. 激光与光电子学进展, 2017, 54(9): 090601. Liang Hongqin, Liu Bin, Chen Jia, Liu Yunfeng, Hu Jinfeng. High Sensitive Elliptic Side Core Surface Plasmon Resonance Refractive Index Sensing Characteristics Based on Dual-Core Photonic Crystal Fiber[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090601.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!