Frontiers of Optoelectronics, 2014, 7 (2): 220–242, 网络出版: 2014-11-10  

Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics

Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics
作者单位
1 Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
2 The Institute of Optics, University of Rochester, Rochester, NY 14627-0186, USA
3 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
Semiconductor nonlinearity in the range of terahertz (THz) frequency has been attracting considerable attention due to the recent development of high-power semiconductor-based nanodevices. However, the underlying physics concerning carrier dynamics in the presence of high-field THz transients is still obscure. This paper introduces an ultrafast, time-resolved THz pump/THz probe approach to study semiconductor properties in a nonlinear regime. The carrier dynamics regarding two mechanisms, intervalley scattering and impact ionization, was observed for doped InAs on a sub-picosecond time scale. In addition, polaron modulation driven by intense THz pulses was experimentally and theoretically investigated. The observed polaron dynamics verifies the interaction between energetic electrons and a phonon field. In contrast to previous work which reported optical phonon responses, acoustic phonon modulations were addressed in this study. A further understanding of the intense field interacting with solid materials will accelerate the development of semiconductor devices. This paper can be divided into 4 sections. Section 1 starts with the design and performance of a table-top THz spectrometer, which has the advantages of ultra-broad bandwidth (one order higher bandwidth compared to a conventional ZnTe sensor) and high electric field strength (>100 kV/cm). Unlike the conventional THz timedomain spectroscopy, the spectrometer integrated a novel THz air-biased-coherent-detection (THz-ABCD) technique and utilized gases as THz emitters and sensors. In comparison with commonly used electro-optic (EO) crystals or photoconductive (PC) dipole antennas, the gases have the benefits of no phonon absorption as existing in EO crystals and no carrier life time limitation as observed in PC dipole antennas. In Section 2, the newly development THz-ABCD spectrometer with a strong THz field strength capability provides a platform for various research topics especially on the nonlinear carrier dynamics of semiconductors. Two mechanisms, electron intervalley scattering and impact ionization of InAs crystals, were observed under the excitation of intense THz field on a sub-picosecond time scale. These two competing mechanisms were demonstrated by changing the impurity doping type of the semiconductors and varying the strength of the THz field. Another investigation of nonlinear carrier dynamics in Section 3 was the observation of coherent polaron oscillation in n-doped semiconductors excited by intense THz pulses. Through modulations of surface reflection with a THz pump/THz probe technique, this work experimentally verifies the interaction between energetic electrons and a phonon field, which has been theoretically predicted by previous publications, and shows that this interaction applies for the acoustic phonon modes. Usually, two transverse acoustic (2TA) phonon responses are inactive in infrared measurement, while they are detectable in second-order Raman spectroscopy. The study of polaron dynamics, with nonlinear THz spectroscopy (in the farinfrared range), provides a unique method to diagnose the overtones of 2TA phonon responses of semiconductors, and therefore incorporates the abilities of both infrared and Raman spectroscopy. Finally, some conclusions were presented in Section 4. In a word, this work presents a new milestone in wave-matter interaction and seeks to benefit the industrial applications in high power, small scale devices.
参考文献

[1] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212

[2] Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005-1–075005-4

[3] Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584

[4] Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001-1–093001-4

[5] Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903-1–103903-4

[6] Karpowicz N, Dai J M, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne timedomain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131-1–011131-3

[7] Ho I C, Guo X, Zhang X C. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Optics Express, 2010, 18(3): 2872–2883

[8] Hu B B, Nuss M C. Imaging with terahertz waves. Optics Letters, 1995, 20(16): 1716–1718

[9] Mittleman D M, Jacobsen R H, Nuss M C. T-ray imaging. IEEE Journal on Selected Topics in Quantum Electronics, 1996, 2(3): 679–692

[10] Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33

[11] Grischkowsky D, Keiding S, Exter M V, Fattinger Ch. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, Optical Physics, 1990, 7(10): 2006–2015

[12] Nuss M C, Auston D H, Capasso F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Physical Review Letters, 1987, 58(22): 2355–2358

[13] Stepanov A G, Hebling J, Kuhl J. Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts. Applied Physics Letters, 2003, 83(15): 3000–3002

[14] Yeh K L, Hoffmann M C, Hebling J, Nelson K A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 2007, 90(17): 171121

[15] McLaughlin C V, Hayden L M, Polishak B, Huang S, Luo J, Kim T D, Jen A K Y. Wideband 15 THz response using organic electrooptic polymer emitter-sensor pairs at telecommunication wavelengths. Applied Physics Letters, 2008, 92(15): 151107-1–151107-3

[16] Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728

[17] Bartel T, Gaal P, Reimann K, Woerner M, Elsaesser T. Generation of single-cycle THz transients with high electric-field amplitudes. Optics Letters, 2005, 30(20): 2805–2807

[18] Lu X, Karpowicz N, Zhang X C. Broadband terahertz detection with selected gases. Journal of the Optical Society of America B, Optical Physics, 2009, 26(9): A66–A73

[19] Ronne C, Thrane L, Astrand P O, Wallqvist A, Mikkelsen K V, Keiding S R. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. Journal of Chemical Physics, 1997, 107(14): 5319–5351

[20] Hashimshony D, Geltner I, Cohen G, Avitzour Y, Zigler A, Smith C. Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy. Journal of Applied Physics, 2001, 90(11): 5778–5781

[21] Shon C H, Chong W Y, Jeon S G, Kim G J, Kim J I, Jin Y S. High speed terahertz pulse imaging in the reflection geometry and image quality enhancement by digital image processing. International Journal of Infrared and Millimeter Waves, 2008, 29(1): 79–88

[22] Khazan M, Meissner R,Wilke I. Convertible transmission-reflection time-domain terahertz spectrometer. Review of Scientific Instruments, 2001, 72(8): 3427–3430

[23] Pashkin A, Kempa M, Nemec H, Kadlec F, Kuzel P. Phase-sensitive time-domain terahertz reflection spectroscopy. Review of Scientific Instruments, 2003, 74(11): 4711–4717

[24] Nashima S, Morikawa O, Takata K, Hangyo M. Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy. Applied Physics Letters, 2001, 79(24): 3923–3925

[25] Jeon T I, Grischkowsky D. Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy. Applied Physics Letters, 1998, 72(23): 3032–3034

[26] Watanabe S, Kondo R, Kagoshima S, Shimano R. Spin-densitywave gap in (TMTSF)2PF6 probed by reflection-type terahertz timedomain spectroscopy. Physica Status Solidi. B, Basic Research, 2008, 245(12): 2688–2691

[27] Palik E D, ed. Silicon (Si), Calcium Carbonate, Calcite (CaCO3), Indium Arsenide (InAs), and Indium Antimonide (InSb) in Handbook of Optical Constants of Solids. New York: Elsevier, 1998

[28] Naftaly M, Dudley R. Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Optics Letters, 2009, 34(8): 1213–1215

[29] Hase M, Kitajima M, Constantinescu A M, Petek H. The birth of a quasiparticle in silicon observed in time-frequency space. Nature, 2003, 426(6962): 51–54

[30] Cheville R A, Grischkowsky D. Far-infrared terahertz time-domain spectroscopy of flames. Optics Letters, 1995, 20(15): 1646–1648

[31] Podobedov V B, Plusquellic D F, Siegrist K E, Fraser G T, Ma Q, Tipping R H. New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(3): 458–467

[32] Liu J, Zhang X C. Birefringence and absorption coefficients of alpha barium borate in terahertz range. Journal of Applied Physics, 2009, 106(2): 023107-1–023107-5

[33] Akturk S, Couairon A, Franco M, Mysyrowicz A. Spectrogram representation of pulse self compression by filamentation. Optics Express, 2008, 16(22): 17626–17636

[34] Bignell L J, Lewis R A. Reflectance studies of candidate THz emitters. Journal of Materials Science Materials in Electronics, 2009, 20(1): 326–331

[35] Wu Q, Sun F G, Campbell P, Zhang X C. Dynamic range of an electro-optic field sensor and its imaging applications. Applied Physics Letters, 1996, 68(23): 3224–3326

[36] Han P Y, Tani M, Usami M, Kono S, Kersting R, Zhang X C. A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy. Journal of Applied Physics, 2001, 89(4): 2357–2359

[37] Sze S M, Ng K K. Physics of Semiconductor Devices. New Jersey: John Wiley & Sons, 2006

[38] Dumke W P. Theory of avalanche breakdown in InSb and InAs. Physical Review, 1968, 167(3): 783–789

[39] Rode D L. Electron transport in InSb, InAs, and InP. Physical Review B: Condensed Matter and Materials Physics, 1971, 3(10): 3287–3299

[40] Brennan K, Hess K. High field transport in GaAs, InP and InAs. Solid-State Electronics, 1984, 27(4): 347–357

[41] Brennan K F, Mansour N S. Monte Carlo calculation of electron impact ionization in bulk InAs and HgCdTe. Journal of Applied Physics, 1991, 69(11): 7844–7847

[42] Ganichev S D, Diener J, Yassievich I N, Prettl W. Poole-Frenkel effect in terahertz electromagnetic fields. Europhysics Letters, 1995, 29(4): 315–320

[43] Markelz A G, Asmar N G, Brar B, Gwinn E G. Interband impact ionization by terahertz illumination of InAs heterostructures. Applied Physics Letters, 1996, 69(26): 3975–3977

[44] Devreese J T, van Welzenis R G. Impact ionisation probability in InSb. Applied Physics A, Solids and Surfaces, 1982, 29(3): 125–132

[45] Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M, Hegmann F A. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express, 2009, 17(12): 9620–9629

[46] Hoffmann M C, Hebling J, Hwang H Y, Yeh K L, Nelson K A. Impact ionization in InSb probed by terahertz pump—terahertz probe spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(16): 161201-1–161201-4

[47] Razzari L, Su F H, Sharma G, Blanchard F, Ayesheshim A, Bandulet H C, Morandotti R, Kieffer J C, Ozaki T, Reid M, Hegmann F A. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(19): 193204-1–193204-4

[48] Wen H, Wiczer M, Lindenberg A M. Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(12): 125203

[49] Arabshahi H, Golafrooz S. Monte Carlo based calculation of electron transport properties in bulk InAs, AlAs and InAlAs. Bulgarian Journal of Physics, 2010, 37(4): 215–222

[50] Frohlich H. Electrons in lattice fields. Advances in Physics, 1954, 3(11): 325–361

[51] Kuehn W, Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R. Coherent ballistic motion of electrons in a periodic potential. Physical Review Letters, 2010, 104(14): 146602

[52] Kuehn W, Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R. Terahertz-induced interband tunneling of electrons in GaAs. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(7): 075204-1–075204-8

[53] Gaal P, Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature, 2007, 450(7173): 1210–1213

[54] Meinert G, Banyai L, Gartner P. Classical polarons in a constant electric field. Physical Review B: Condensed Matter and Materials Physics, 2001, 63(24): 245203-1–245203-8

[55] Banyai L. Motion of a classical polaron in a dc electric field. Physical Review Letters, 1993, 70(11): 1674–1677

[56] Ho I C, Zhang X C. Driving intervalley scattering and impact ionization in InAs with intense terahertz pulses. Applied Physics Letters, 2011, 98(24): 241908-1–241908-3

[57] Koteles E S, DatarsWR, Dolling G. Far-infrared phonon absorption in InSb. Physical Review B: Condensed Matter and Materials Physics, 1974, 9(2): 572–582

[58] Kiefer W, Richter W, Cardona M. Second-order Raman scattering in InSb. Physical Review B: Condensed Matter and Materials Physics, 1975, 12(6): 2346–2354

[59] Carles R, Saint-Cricq N, Renucci J B, Renucci M A, Zwick A. Second-order Raman scattering in InAs. Physical Review B: Condensed Matter and Materials Physics, 1980, 22(10): 4804–4815

[60] Borcherds P H, Kunc K. The lattice dynamics of indium pnictides. Journal of Physical Chemistry, 1978, 11(20): 4145–4155

[61] Smith E, Dent G. Modern Raman Spectroscopy. West Sussex: John Wiley & Sons, 2005

[62] Hecht E. Optics. San Francisco: Addison Wesley, 2002

I-Chen HO, Xi-Cheng ZHANG. Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics[J]. Frontiers of Optoelectronics, 2014, 7(2): 220–242. I-Chen HO, Xi-Cheng ZHANG. Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics[J]. Frontiers of Optoelectronics, 2014, 7(2): 220–242.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!