激光与光电子学进展, 2013, 50 (8): 080009, 网络出版: 2013-08-08   

梯度特异介质表面研究进展 下载: 924次

Research Progress on Gradient Meta-Surfaces
作者单位
复旦大学物理系 应用表面物理国家重点实验室, 上海 200433
摘要
近年来梯度特异介质表面成为电磁特异介质领域的重要分支与研究热点。回顾了该领域最近的部分研究成果,包括利用特异介质表面实现传播波与表面波的完美转换以及转换效率分析,制备光波段特异介质表面实现高效宽带奇异反射,建立一套模展开理论研究特异介质表面散射问题,利用反射式特异介质表面实现光会聚,以及分析比较反射式和透射式特异介质表面的优劣等。基于以上梯度特异介质表面的研究介绍,最后展望了该领域的研究方向。
Abstract
Recently, gradient meta-surface has become an important and hot sub-branch in electromagnetic metamaterial research. In this paper, we review some recent progresses in this area, such as using gradient meta-surfaces as a bridge to link propagating waves and surface waves and the conversion efficiency issue related to such conversion, high efficiency broadband anomalous reflection by optical gradient meta-surfaces, the development of a mode-expansion theory for studying the scattering properties of inhomogeneous meta-surfaces, flat meta-surfaces to focus electromagnetic waves in reflection geometry and the comparison of reflective and transmissive gradient meta-surfaces. Finally, we present our perspectives on the future direction of this research field.
参考文献

[1] J B Pendry, A J Holden, W J Stewart, et al.. Extremely low frequency plasmons in metallic mesostructures [J]. Phys Rev Lett, 1996, 76(25): 4773-4776.

[2] J B Pendry, A J Holden, D J Robbins, et al.. Magnetism from conductors and enhanced nonlinear phenomena [J]. IEEE Trans Microwave Theory Tech, 1999, 47(11): 2075-2084.

[3] J B Pendry. Negative refraction [J]. Contemp Phys, 2004, 45(3): 191-202.

[4] J B Pendry. Negative refraction makes a perfect lens [J]. Phys Rev Lett, 2000, 85(18): 3966-3969.

[5] D R Smith, Willie J Padilla, D C Vier, et al.. Composite medium with simultaneously negative permeability and permittivity [J]. Phys Rev Lett, 2000, 84(18): 4184-4187.

[6] R A Shelby, D R Smith, S Schultz. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-79.

[7] J Valentine, S Zhang, T Zentgraf, et al.. Three-dimensional optical metamaterial with a negative refractive index [J]. Nature, 2008, 455(7211): 376-379.

[8] U Leonhardt. Optical conformal mapping [J]. Science, 2006, 312(5781): 1777-1780.

[9] J B Pendry, D Schurig, D R Smith. Controlling electromagnetic fields [J]. Science, 2006, 312(5781): 1780-1782.

[10] N Landy, S Sajuyigbe, J Mork, et al.. Perfect metamaterial absorber [J]. Phys Rev Lett, 2008, 100(20): 207402.

[11] D Schurig, J J Mock, B J Justice, et al.. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980.

[12] W S Cai, U K Chettiar, A V Kildishev, et al.. Optical cloaking with metamaterials [J]. Nature Photon, 2007, 1(4): 224-227.

[13] H Y Chen, C T Chan, P Sheng. Transformation optics and metamaterials [J]. Nature Mater, 2010, 9(5): 387-396.

[14] H F Ma, T J Cui. Three-dimensional broadband ground-plane cloak made of metamaterials [J]. Nature Commun, 2010, 1(3): 21.

[15] Y M Liu, T Zentgraf, G Bartal, et al.. Transformational plasmon optics [J]. Nano Lett, 2010, 10(6): 1991-1997.

[16] P A Huidobro, M L Nesterov, L Martin-Moreno, et al.. Transformation optics for plasmonics [J]. Nano Lett, 2010, 10(6): 1985-1990.

[17] A Aubry, D Y Lei, A I Fernández-Domínguez, et al.. Plasmonic light-harvesting devices over the whole visible spectrum [J]. Nano Lett, 2010, 10(7): 2574-2579.

[18] T Zentgraf, Y M Liu, M H Mikkelsen, et al.. Plasmonic luneburg and eaton lenses [J]. Nature Nanotechnol, 2011, 6(3): 151-155.

[19] A V Kildishev, A Boltasseva, V M Shalaev. Planar photonics with metasurfaces [J]. Science, 2013, 339(6125): doi: 10.1126/science.1232009.

[20] N Engheta. Antenna-guided light [J]. Science, 2011, 334(6054): 317-318.

[21] K L Tsakmakidis, A D Boardman, O Hess. “Trapped rainbow” storage of light in metamaterials [J]. Nature, 2007, 450(7168): 397-401.

[22] Q Q Gan, Z Fu, Y J Ding, et al.. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures [J]. Phys Rev Lett, 2008, 100(25): 256803.

[23] U Levy, M Abashin, K Ikeda, et al.. Inhomogenous dielectric metamaterials with space-variant polarizability [J]. Phys Rev Lett, 2007, 98(24): 243901.

[24] N Kundtz, D R Smith. Extreme-angle broadband metamaterial lens [J]. Nature Mater, 2010, 9(2): 129-132.

[25] D R Smith, J J Mock, A F Starr. Gradient index metamaterials [J]. Phys Rev E, 2005, 71(3): 036609.

[26] X Q Lin, T J Cui, J Y Chin, et al.. Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens [J]. Appl Phys Lett, 2008, 92(13): 131904.

[27] R Liu, Q Cheng, J Y Chin, et al.. Broadband gradient index microwave quasi optical elements based on non-resonant metamaterials [J]. Opt Express, 2009, 17(23): 21030-21041.

[28] B Vasi, G Isi, R Gaji, et al.. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime [J]. Opt Express, 2010, 18(19): 20321-20333.

[29] N Yu, P Genevet, M A Kats, et al.. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337.

[30] X Ni, N K Emani, A Kildishev, et al.. Broadband light bending with plasmonic nanoantennas [J]. Science, 2012, 335(6067): 427.

[31] N Yu, F Aieta, P Genevet, et al.. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces [J]. Nano Lett, 2012, 12(12): 6328-6333.

[32] U Levy, H C Kim, C H Tsai, et al.. Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation [J]. Opt Lett, 2005, 30(16): 2089-2091.

[33] S Larouche, Y-J Tsai, T Tyler, et al.. Infrared metamaterial phase holograms [J]. Nature Mater, 2012, 11(5): 450-454.

[34] X Yin, Z Ye, J Rho, et al.. Photonic spin hall effect at metasurfaces [J]. Science, 2013, 339(6126): 1405-1407.

[35] D M Pozar, S D Targonski, H D Syrigos. Design of millimeter wave microstrip reflectarrays [J]. IEEE Trans Antenn Propag, 1997, 45(2): 287-296.

[36] P Padilla, A Muoz-Acevedo, M Sierra-Castaer, et al.. Electronically reconfigurable transmitarray at Ku band for microwave applications [J]. IEEE Trans Antenn Propag, 2010, 58(8): 2571-2579.

[37] S Sun, Q He, S Xiao, et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves [J]. Nature Mater, 2012, 11(5): 426-431.

[38] E Kretschmann, H Raether. Radiative decay of nonradiative surface plasmons excited by light [J]. Z Naturforsch A, 1968, 23(12): 2135-2136.

[39] H Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings [M]. New York: Springer-Verlag, 1988.

[40] M Neviere, R Petit, M Cadilhac. About the theory of optical crating coupler-waveguide systems [J]. Opt Commun, 1973, 8(2): 113-117.

[41] Y B Tang, Z C Wang, L Wosinski, et al.. Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits [J]. Opt Lett, 2010, 35(8): 1290-1292.

[42] J B Pendry, L Martin-Moreno, F J Garcia-Vidal. Mimicking surface plasmons with structured surfaces [J]. Science, 2004, 305(5685): 847-848.

[43] M J Lockyear, A P Hibbins, J R Sambles. Microwave surface-plasmon-like modes on thin metamaterials [J]. Phys Rev Lett, 2009, 102(7): 073901.

[44] S Sun, K-Y Yang, C-M Wang, et al.. High-efficiency broadband anomalous reflection by gradient meta-surfaces [J]. Nano Lett, 2012, 12(12): 6223-6229.

[45] X Li, S Xiao, B Cai, et al.. Flat metasurfaces to focus electromagnetic waves in reflection geometry [J]. Opt Lett, 2012, 37(23): 4940-4942.

[46] C Qu, S Xiao, S Sun, et al.. A theoretical study on the conversion efficiencies of gradient meta-surfaces [J]. Europhys Lett, 2013, 101(5): 54002.

[47] L Zhou, X Q Huang, C T Chan. A time-dependent Green′s function approach to study the transient phenomena in metamaterial lens focusing [J]. Photonics Nanostruct Fundam Appl, 2005, 3(2-3): 100-106.

[48] J M Hao, L Zhou, C T Chan. An effective-medium model for high-impedance surfaces [J]. Appl Phys A, 2007 87(2): 281-284.

[49] O Paul, B Reinhard, B Krolla, et al.. Gradient index metamaterial based on slot elements [J]. Appl Phys Lett, 2010, 96(24): 241110.

[50] J Neu, B Krolla, O Paul, et al.. Metamaterial-based gradient index lens with strong focusing in the THz frequency range [J]. Opt Express, 2010, 18(26): 27748-27757.

[51] L Verslegers, P B Catrysse, Z Yu, et al.. Planar lenses based on nanoscale slit arrays in a metallic film [J]. Nano Lett, 2009, 9(1): 235-238.

[52] L Lin, X M Goh, L P McGuinness, et al.. Broadband plasmonic microlenses based on patches of nanoholes [J]. Nano Lett, 2010, 10(10): 4111-4116.

[53] C Ma, Z Liu. A super resolution metalens with phase compensation mechanism [J]. Appl Phys Lett, 2010, 96(18): 183103.

[54] C Ma, M A Escobar, Z Liu. Extraordinary light focusing and Fourier transform properties of gradient-index metalenses [J]. Phys Rev B, 2011, 84(19): 195142.

[55] F Aieta, P Genevet, M A Kats, et al.. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces [J]. Nano Lett, 2012, 12(9): 4932-4936.

孙树林, 何琼, 肖诗逸, 许钦, 李欣, 屈澈, 周磊. 梯度特异介质表面研究进展[J]. 激光与光电子学进展, 2013, 50(8): 080009. Sun Shulin, He Qiong, Xiao Shiyi, Xu Qin, Li Xin, Qu Che, Zhou Lei. Research Progress on Gradient Meta-Surfaces[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080009.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!