中国光学, 2020, 13 (2): 372, 网络出版: 2020-05-21  

金属-电介质复合结构实现荧光远场增强

Far-field range fluorescence enhancement by a hybrid metal-dielectric structure
作者单位
1 太原理工大学 新型传感器与智能控制教育部/山西省重点实验室,山西 太原 030024
2 太原理工大学 物理与光电工程学院,山西 太原 030024
引用该论文

董林秀, 陈智辉, 杨毅彪, 费宏明, 刘欣. 金属-电介质复合结构实现荧光远场增强[J]. 中国光学, 2020, 13(2): 372.

DONG Lin-xiu, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Far-field range fluorescence enhancement by a hybrid metal-dielectric structure[J]. Chinese Optics, 2020, 13(2): 372.

参考文献

[1] 李红博, 尹坤. 基于量子点的荧光型太阳能聚光器[J]. 中国光学, 2018, 10(5): 555-567.

    LI H B, YIN K. Quantum dots based luminescent solar concentrator[J]. Chinese Optics, 2018, 10(5): 555-567. (in Chinese)

[2] 安娜,卢睿,马昊玥, 等. CdSe/CdS核壳量子点复合材料合成及其在白光发光二极管中的应用[J]. 发光学报, 2017, 38(8): 1003-1009.

    AN N, LU R, MA H Y, et al.. Synthesis of CdSe/CdS core/shell quantum dots luminescent microspheres and their application for WLEDs[J]. Chinese Journal of Luminescence, 2017, 38(8): 1003-1009. (in Chinese)

[3] GUZATOV D V, VASCHENKO S V, STANKEVICH V V, et al..Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment[J]. The Journal of Physical Chemistry C, 2012, 116(19): 10723-10733.

[4] TOBIAS AK, JONES M. Metal-enhanced fluorescence from quantum dot-coupled gold nanoparticles[J]. The Journal of Physical Chemistry C, 2019, 123(2): 1389-1397.

[5] HOANG T B, AKSELROD G M, ARGYROPOULOS C, et al..Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 2015, 6: 7788.

[6] SHEN H M, LU G W, ZHANG T Y, et al..Molecule fluorescence modified by a slit-based nanoantenna with dual gratings[J]. Journal of the Optical Society of America B, 2013, 30(9): 2420-2426.

[7] ZHANG J, FU Y, CHOWDHURY M H, et al..Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles[J]. Nano Letters, 2007, 7(7): 2101-2107.

[8] JIANG Y, WANG H Y, WANG H, et al..Surface plasmon enhanced fluorescence of dye molecules on metal grating films[J]. The Journal of Physical Chemistry C, 2011, 115(25): 12636-12642.

[9] KINKHABWALA A, YU Z F, FAN SH H, et al..Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 2009, 3(11): 654-657.

[10] LU G W, XU J N, WEN T, et al..Hybrid metal-dielectric nano-aperture antenna for surface enhanced fluorescence[J]. Materials, 2018, 11(8): 1435.

[11] NGO Q M, HO Y L D, PUGH J R, et al..Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays[J]. Current Applied Physics, 2018, 18(7): 793-798.

[12] RAY K, BADUGU R, SZMACINSKI H, et al..Several hundred-fold enhanced fluorescence from single fluorophores assembled on silver nanoparticle-dielectric-metal substrate[J]. Chemical Communications, 2015, 51(81): 15023-15026.

[13] SUN S, LI R, LI M, et al..Hybrid mushroom nanoantenna for fluorescence enhancement by matching the stokes shift of the emitter[J]. The Journal of Physical Chemistry C, 2018, 122(26): 14771-14780.

[14] LAKOWICZ J R, RAY K, CHOWDHURY M, et al..Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy[J]. Analyst, 2008, 133(10): 1308-1346.

[15] SUN S, LI M, DU Q G, et al..Metal-dielectric hybrid dimer nanoantenna: coupling between surface plasmons and dielectric resonances for fluorescence enhancement[J]. The Journal of Physical Chemistry C, 2017, 121(23): 12871-12884.

[16] DUTTA CHOUDHURY S, BADUGU R, NOWACZYK K, et al..Tuning fluorescence direction with plasmonic metal-dielectric-metal substrates[J]. The Journal of Physical Chemistry Letters, 2013, 4(1): 227-232.

[17] BADUGU R, SZMACINSKI H, RAY K, et al..Metal-dielectric waveguides for high-efficiency coupled emission[J]. ACS Photonics, 2015, 2(7): 810-815.

[18] BOLIN F P, PREUSS L E, TAYLOR R C, et al..Refractive index of some mammalian tissues using a fiber optic cladding method[J]. Applied Optics, 1989, 28(12): 2297-2303.

[19] CHOWDHURY M H, RAY K, GRAY S K, et al..Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules[J]. Analytical Chemistry, 2009, 81(4): 1397-1403.

[20] CHEN ZH H, LIANG L, WANG Y, et al..Spatial remote luminescence enhancement by a half-cylindrical Au groove[J]. Journal of Materials Chemistry C, 2016, 4(47): 11321-11327.

[21] CHEN ZH H, SHI H, WANG Y, et al..Sharp convex gold grooves for fluorescence enhancement in micro/nano fluidic biosensing[J]. Journal of Materials Chemistry B, 2017, 5(44): 8839-8844.

[22] LIU F F, YU Y, LIN B X, et al..Visualization of hormone binding proteins in vivo based on Mn-doped CdTeQDs[J]. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 2014, 131: 9-16.

[23] WRENGER J P. Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(3): 258-265.

董林秀, 陈智辉, 杨毅彪, 费宏明, 刘欣. 金属-电介质复合结构实现荧光远场增强[J]. 中国光学, 2020, 13(2): 372. DONG Lin-xiu, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Far-field range fluorescence enhancement by a hybrid metal-dielectric structure[J]. Chinese Optics, 2020, 13(2): 372.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!