中国光学, 2020, 13 (2): 372, 网络出版: 2020-05-21  

金属-电介质复合结构实现荧光远场增强

Far-field range fluorescence enhancement by a hybrid metal-dielectric structure
作者单位
1 太原理工大学 新型传感器与智能控制教育部/山西省重点实验室,山西 太原 030024
2 太原理工大学 物理与光电工程学院,山西 太原 030024
摘要
本文提出一种大尺度的金属-电介质复合微纳结构(银-硅结构),用于提高荧光生物检测的灵敏度及解决荧光物质距离结构远场范围时荧光增强的近场局限。这种大尺度的金属-电介质复合微纳结构与之前的金属-电介质复合微纳结构不同,其通过光的散射和干涉实现了荧光物质距离结构远场范围时的荧光增强。在本文中,通过采用时域有限差分法,主要从荧光激发和荧光发射两个过程研究银-硅结构。结果表明,在激发过程中,银-硅结构的荧光强度高于玻璃结构且位于银-硅结构两柱之间的狭缝中的电场分布比金属结构(银结构)更均匀,因此在银-硅结构中可以实现荧光增强,而且分子运动行为的检测更准确。在发射过程中,当荧光纳米粒子距离结构远场范围内时,与玻璃相比,银-硅结构可以实现更好的荧光增强效果。利用银-硅结构实现荧光增强的机理是光的散射和干涉,荧光被银膜向上散射,同时,结构两侧的银/硅柱也散射一部分荧光,荧光相互干涉传播至远场实现荧光增强。此外,银-硅结构易于制备和集成。因此,其可以很好地应用于生物传感领域。
Abstract
In order to improve the sensitivity of fluorescence biosensing and solve the near-field limitations to enhancement when the fluorescent nanoparticle is in the structures far-field range, a large-scale hybrid metal-dielectric structure(Ag-Si structure) is proposed to enhance fluorescence in the far-field range.This hybrid metal-dielectric structure is different from previous metal-dielectric structures because it achieves fluorescence enhancement when the fluorescent nanoparticle is in the structures far-field range due to scattering and interference. In this paper, the Ag-Si structure is investigated with respect to its excitation process and the emission process using the Finite-Difference Time-Domain (FDTD) method. In the excitation process, the intensity of the Ag-Si structures fluorescence is higher than that of the bare glass structure and the electric field distribution of the Ag-Si structure is more uniform in the slit between the two pillars than it is in the metal structure (Ag structure). With this structure, fluorescence enhancement can be achieved and its detection of molecular motion behavior is more accurate. In the emission process, fluorescence enhancement in the Ag-Si structure is higher than that of the bare glass structure when the fluorescent nanoparticle is in the structures far-field range. The mechanisms that achieve fluorescence enhancement in the Ag-Si structure are scattering and interference. Fluorescence is scattered upward by the silver film while the silver and silicon pillars on both sides of the structure simultaneously scatter the partial fluorescence, then the fluorescence interferes and propagates to the far-field to achieve fluorescence enhancement.Further advocating its use, an Ag-Si structure is simple to fabricate and integrate, allowing seamless application in biosensing.
参考文献

[1] 李红博, 尹坤. 基于量子点的荧光型太阳能聚光器[J]. 中国光学, 2018, 10(5): 555-567.

    LI H B, YIN K. Quantum dots based luminescent solar concentrator[J]. Chinese Optics, 2018, 10(5): 555-567. (in Chinese)

[2] 安娜,卢睿,马昊玥, 等. CdSe/CdS核壳量子点复合材料合成及其在白光发光二极管中的应用[J]. 发光学报, 2017, 38(8): 1003-1009.

    AN N, LU R, MA H Y, et al.. Synthesis of CdSe/CdS core/shell quantum dots luminescent microspheres and their application for WLEDs[J]. Chinese Journal of Luminescence, 2017, 38(8): 1003-1009. (in Chinese)

[3] GUZATOV D V, VASCHENKO S V, STANKEVICH V V, et al..Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment[J]. The Journal of Physical Chemistry C, 2012, 116(19): 10723-10733.

[4] TOBIAS AK, JONES M. Metal-enhanced fluorescence from quantum dot-coupled gold nanoparticles[J]. The Journal of Physical Chemistry C, 2019, 123(2): 1389-1397.

[5] HOANG T B, AKSELROD G M, ARGYROPOULOS C, et al..Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 2015, 6: 7788.

[6] SHEN H M, LU G W, ZHANG T Y, et al..Molecule fluorescence modified by a slit-based nanoantenna with dual gratings[J]. Journal of the Optical Society of America B, 2013, 30(9): 2420-2426.

[7] ZHANG J, FU Y, CHOWDHURY M H, et al..Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles[J]. Nano Letters, 2007, 7(7): 2101-2107.

[8] JIANG Y, WANG H Y, WANG H, et al..Surface plasmon enhanced fluorescence of dye molecules on metal grating films[J]. The Journal of Physical Chemistry C, 2011, 115(25): 12636-12642.

[9] KINKHABWALA A, YU Z F, FAN SH H, et al..Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 2009, 3(11): 654-657.

[10] LU G W, XU J N, WEN T, et al..Hybrid metal-dielectric nano-aperture antenna for surface enhanced fluorescence[J]. Materials, 2018, 11(8): 1435.

[11] NGO Q M, HO Y L D, PUGH J R, et al..Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays[J]. Current Applied Physics, 2018, 18(7): 793-798.

[12] RAY K, BADUGU R, SZMACINSKI H, et al..Several hundred-fold enhanced fluorescence from single fluorophores assembled on silver nanoparticle-dielectric-metal substrate[J]. Chemical Communications, 2015, 51(81): 15023-15026.

[13] SUN S, LI R, LI M, et al..Hybrid mushroom nanoantenna for fluorescence enhancement by matching the stokes shift of the emitter[J]. The Journal of Physical Chemistry C, 2018, 122(26): 14771-14780.

[14] LAKOWICZ J R, RAY K, CHOWDHURY M, et al..Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy[J]. Analyst, 2008, 133(10): 1308-1346.

[15] SUN S, LI M, DU Q G, et al..Metal-dielectric hybrid dimer nanoantenna: coupling between surface plasmons and dielectric resonances for fluorescence enhancement[J]. The Journal of Physical Chemistry C, 2017, 121(23): 12871-12884.

[16] DUTTA CHOUDHURY S, BADUGU R, NOWACZYK K, et al..Tuning fluorescence direction with plasmonic metal-dielectric-metal substrates[J]. The Journal of Physical Chemistry Letters, 2013, 4(1): 227-232.

[17] BADUGU R, SZMACINSKI H, RAY K, et al..Metal-dielectric waveguides for high-efficiency coupled emission[J]. ACS Photonics, 2015, 2(7): 810-815.

[18] BOLIN F P, PREUSS L E, TAYLOR R C, et al..Refractive index of some mammalian tissues using a fiber optic cladding method[J]. Applied Optics, 1989, 28(12): 2297-2303.

[19] CHOWDHURY M H, RAY K, GRAY S K, et al..Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules[J]. Analytical Chemistry, 2009, 81(4): 1397-1403.

[20] CHEN ZH H, LIANG L, WANG Y, et al..Spatial remote luminescence enhancement by a half-cylindrical Au groove[J]. Journal of Materials Chemistry C, 2016, 4(47): 11321-11327.

[21] CHEN ZH H, SHI H, WANG Y, et al..Sharp convex gold grooves for fluorescence enhancement in micro/nano fluidic biosensing[J]. Journal of Materials Chemistry B, 2017, 5(44): 8839-8844.

[22] LIU F F, YU Y, LIN B X, et al..Visualization of hormone binding proteins in vivo based on Mn-doped CdTeQDs[J]. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 2014, 131: 9-16.

[23] WRENGER J P. Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(3): 258-265.

董林秀, 陈智辉, 杨毅彪, 费宏明, 刘欣. 金属-电介质复合结构实现荧光远场增强[J]. 中国光学, 2020, 13(2): 372. DONG Lin-xiu, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Far-field range fluorescence enhancement by a hybrid metal-dielectric structure[J]. Chinese Optics, 2020, 13(2): 372.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!